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ABSTRACT
NEUTRON STAR TIDAL DEFORMABILITY AND GRAVITATIONAL
SELF-FORCE
by

Eric D. Van Oeveren

The University of Wisconsin—Milwaukee, August 2018
Under the Supervision of Professor Alan Wiseman

The recent direct observations of gravitational waves by the LIGO-Virgo collaboration
[1-6] have been important pieces of evidence in agreement with Einstein’s theory of
gravity, the General Theory of Relativity. In addition, they open an era of gravitational-
wave astronomy that promises to give us much more information on the systems that
produce gravitational radiation. Perhaps most prominent among these are binary systems
composed of either two black holes, two neutron stars, or one black hole and one neutron
star. This dissertation details theoretical predictions regarding such systems.

It is hoped that gravitational radiation emanating from binary systems that include
at least one neutron star will allow us to determine the equation of state of matter at very
high densities, and therefore information on the composition of such matter. We place
a theoretical upper limit on the tidal deformability of neutron stars, which describes
how easily the shape of neutron stars change in response to an external gravitational
field. This upper limit exists because of causality: the sound speed inside a neutron star
must be less than the speed of light. This puts a limit on the stiffness of high-density
matter, and therefore on the size of neutron stars, which closely corresponds to the tidal
deformability. Our upper limit is consistent with observational information from the
observation of gravitational waves emanating from a neutron star-neutron star binary
6, 7].

Another system that produces gravitational waves is one made of two black holes.
We study such systems, specifically ones where one black hole is much more massive
than the other. The gravitational waves sourced by these systems will not be observable

by LIGO, but will require a space-based gravitational wave detector. We use a scalar

ii
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point charge as a toy model for the smaller black hole and apply a method discovered by
Hikida et al. [8, 9] to compute the self-force on an accelerated scalar charge in circular
orbit analytically through 6™ Post-Newtonian order. Our results are compatible with
previous Post-Newtonian calculations [9] and with numerical work on accelerated scalar
charges [10].

Finally, we extend the method of Hikida et al. to the gravitational case. In particular,
we calculate a gauge-invariant quantity discovered by Detweiler [11] through 6" Post-
Newtonian order. We also calculate the time derivative of that quantity, which gives the
power of the radiated gravitational waves. Interestingly, we find that if the Equivalence
Principle is not obeyed and freely-falling particles can follow non-geodesic paths, dipolar
gravitational radiation is produced. When we do enforce the Equivalence Principle, our

results are consistent with previous Post-Newtonian calculations [12, 13].

il
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CONVENTIONS

e We use metric signature (— + ++).

e We use Einstein sum notation. That is, g, u” =) g,u”.
v

e We use units where ¢ = G = 1.
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Chapter 1

Introduction

This dissertation will discuss my contributions to predictions regarding gravitational
waves, which were originally predicted by Albert Einstein in 1916 [14] and directly de-
tected for the first time in 2015 [1]. These predictions all involve binary systems, that is,
systems of two objects. There are several techniques used in General Relativity to study

such systems, and we start with a conceptual explanation of three of them.

1.1 Numerical Relativity, Post-Newtonian Theory, and Self-

Force

The remaining chapters of this dissertation will discuss different sources of gravitational
waves and make predictions regarding their motion. All of the sources discussed in
this dissertation are binary systems. While the gravitational fields surrounding isolated,
spherically-symmetric objects are well-understood, binary systems are notoriously tricky
to study in General Relativity due to the non-linearity of Einstein’s equation. In order to
study binary systems theoretically, physicists have developed three different techniques
that are discussed in this dissertation: numerical relativity, Post-Newtonian theory, and
self-force. Each technique is useful in a different situation (see Fig. 1). Here we also
briefly mention the Effective One Body (EOB) formalism pioneered by Buonanno and

Damour [15]. The EOB formalism attempts to combine information from all three of the
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Figure 1 : Different methods for solving the binary problem. For small mass ratios and small interbody
distances, numerical relativity is most useful. For large interbody distances, Post-Newtonian theory
reigns supreme. For large mass ratios, gravitational self-force is used.

techniques discussed below to give analytical results applicable to all binaries, with much

success. For more information on the EOB formalism, we direct the reader to the review

by Damour [16].

1.1.1 Numerical Relativity

In numerical relativity, one uses computers to solve Einstein’s equation. Foundational
work in numerical relativity was originally done by Arnowitt, Deser, and Misner [17];
their methods were later improved upon by Shibata and Nakamura [18] and Baumgarte
and Shapiro [19]. In principle, any problem in gravitational physics could be solved this
way, but in practice, it is difficult in situations where the two objects involved are far
from each other or have very different masses. This is where the two other formalisms

come into play.
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1.1.2 Post-Newtonian Theory

Post-Newtonian (PN) Theory was developed to accurately describe binary systems com-
prised of two objects that are slow-moving and far from each other. The two objects
are considered to be far enough from each other that they can each be considered point
particles. Post-Newtonian results are given in powers of the quantity M/r or v?, where
M 1is the total mass of the system, r is the separation distance, and v is the speed of one
of the objects. Since these two quantities are small when r is large and v is small, this
simplifies Einstein’s equation to the point where it is solvable. In non-geometrized units,
a PN expansion can be thought of as a series in 1/¢?; since c is large compared to velocites
we encounter in our solar system, a PN expansion is useful in describing a system that
is not relativistic. The term “Post-Newtonian” comes from the fact that, as the separa-
tion distance increases, the predictions from General Relativity become indistinguishable
from those of Newtonian gravity. Each new term in a PN expansion therefore gives a

finer correction to Newtonian predictions. For a review on PN Theory, see [20].

1.1.3 Self-Force

Self-force is applicable when the mass of one object is much smaller than that of the other,
but can be used for any inter-object distance r. In this situation, numerical relativity
is insufficient because the gravitational field due to the smaller mass is quite small and
difficult to compute. Self-force gives results in a series of the ratio of the masses. This
ratio, again, is small in situations where self-force is used, and writing answers in terms of
this quantity simplifies Einstein’s equation. For more details on how self-force calculations
are performed, see the third and fourth chapters of this dissertation. For a review on self-

force, see [21].

1.2 The Format of this Dissertation

The rest of this dissertation is split into three chapters. Chapter 2 will describe work I

did with John Friedman that placed a theoretical upper limit on the tidal deformability
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of a neutron star and its effects on gravitational waves sourced by binaries including
neutron stars. This work was originally published in Physical Review D [22]. Since then,
gravitional waves from a neutron star-neutron star binary have been observed [6], and
the 90% confidence interval based on that data [7] is consistent with our results.

Chapter 3 will detail work I did with Tom Linz under the supervision of Alan Wiseman,
with help from John Friedman. This work used a method pioneered by Hikida et al. [8, 9]
to generate a PN expansion for the self-force on a scalar charge in an accelerated circular
orbit around a non-spinning black hole. Our results are consistent with Hikida et al. and
numerical self-force data reported in [10] on accelerated scalar charges.

Chapter 4 will report work I did under the supervision of Alan Wiseman that extended
the method of Hikida et al. to the gravitational case. Once again, we study a particle in
circular orbit around a non-spinning black hole, and we treat the particle’s orbital angular
velocity as independent from its radial coordinate. However, we do not calculate the
radial self-force—which is gauge-dependent—and instead find a related gauge-invariant
quantity discovered by Detweiler [11] and its time-derivative, which gives the temporal
component of the force. Furthermore, we cannot claim that the results accurately portray
the gravitational perturbation from an accelerated particle, since we have not included the
stress-energy of the accelerating force as a source for the gravitational field. Nevertheless,
treating the particle’s angular velocity as independent of its radial coordinate leads to
an interesting result: if such a freely-falling particle were to follow a non-geodesic path,
it would result in dipolar gravitational radiation. When we enforce geodesic motion on
the particle, our results are consistent with previous PN gravitational self-force results,

including those from Bini and Damour [12], Kavanagh et al. [13], and Fujita [111].
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Chapter 2

Neutron Star Tidal Deformability

In this chapter, we discuss work I did with John Friedman constraining the tidal deforma-
bility of a neutron. In particular, we set an upper limit on the tidal deformability and its
effect on the gravitational waveform of a black hole-neutron star binary. This upper limit
is based on causality, which prevents anything from traveling faster than light. Applying
this speed limit to the sound speed through neutron stars constrains the stiffness of high-
density matter, which in turn constrains the size of neutron stars. This size constraint
corresponds to a constraint on the tidal deformability, as we show in this chapter. This
work was originally published in Physical Review D [22], and I reproduce it here with
minimal changes. I also compare our results to the 90% confidence interval [7] on the

dimensionless tidal deformability that arose from the observation of GW170817 [6].

2.1 Introduction

Recently, Advanced LIGO [6] detected gravitational waves sourced by a coalescing neu-
tron star binary, and in the future we are likely to detect each year the inspiral and
coalescence of several compact binary systems that include neutron stars, both black
hole-neutron star (BHNS) and binary neutron-star (BNS) systems. These observations
can constrain the neutron-star equation of state (EOS), which gives the pressure p in
terms of the energy density e. A stiffer EOS, where the pressure increases rapidly with

density, yields stars with larger radii and larger tidal effects on the waveform, governed
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by the star’s tidal deformablity. In particular, tidal distortion during inspiral increases
with the stiffness of the EOSs. Because energy is lost both to gravitational waves and
to the work needed to distort the stars, the inspiral proceeds more rapidly for stars with
greater tidal deformability. The result is a waveform in which the increase in frequency
is more rapid and in which coalescence occurs sooner — at lower frequency.

Beginning with work by Kochanek [23] and Lai and Wiseman [24], a number of authors
have studied the effect of tides on inspiral waveforms. Simulations [25-43] of BHNS and
BNS systems and analytic approximations in the context of post-Newtonian theory [44]
and the Effective-One-Body (EOB) formalism [45-47] are nearing the precision needed
to extract neutron-star deformability from observations with the projected sensitivity of
Advanced LIGO. Recent estimates of the measurability of tidal effects and the ability of
these observatories to constrain the EOS with signals from BHNS and BNS systems are
given in [48-52] and references therein.

In this work, we obtain the upper limit imposed by causality on the tidal deformability
of neutron stars and estimate the resulting constraint on the maximum departure of the
waveform of a BHNS inspiral from a corresponding spinless binary black hole (BBH)
inspiral.’ The limit is analogous to the upper limits on neutron-star mass Myg [55, 56]
and radius R [57]. In each case, one assumes an EOS of the form p = p(¢) that is known
below an energy density €paten, and one obtains a limit on M and R by requiring that the
EOS be causal for € > €a1cn in the sense that the sound speed, given by \/W, must
be less than the speed of light. Because the sound speed is a measure of the stiffness
of the EOS, this is a constraint on the stiffness. An upper limit on tidal deformability
then implies an upper limit on the departure of gravitational wave phase shifts from

corresponding waveforms of BBH inspiral.

LAfter this paper was posted to arXiv, Moustakidis [53] pointed out a preprint by him and his
coauthors that also obtains upper limits on neutron star mass and tidal deformability imposed by bounds
on the speed of sound, including vsouna < ¢. However, they use a matching density (described in the
next section) 50% higher than ours, giving less conservative results. Furthermore, they do not consider

tidal effects during late inspiral, whereas we apply the results of [54] to do so.
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2.2 Method

2.2.1 Causal EOS

For a perfect fluid with a one-parameter EOS p = p(¢), where p is the pressure and e
the density of the fluid in its own rest frame, causality implies that the speed of sound,
\/W, is less than the speed of light. That is, the dynamical equations describing the
evolution of fluid and metric are hyperbolic, with characteristics associated with fluid

degrees of freedom lying outside the light cone unless

dp
<. 221
— ( )

There is some inaccuracy in using the one-parameter EOS that governs the equilibrium
star to define the characteristic velocities of the fluid, because fluid oscillations with the
highest velocities have frequencies too high for the temperature of a fluid element and
the relative density Y; of each species of particle to reach their values for the background
fluid star. Nevertheless, using a result of Geroch and Lindblom [58], we show in Appendix
A that causality implies the equilibrium inequality (2.2.1) for locally stable relativistic
fluids satisfying a two-parameter EOS p = p(e, s), where s is the entropy per baryon. For
the multi-parameter equation of state p = p(e, s,Y;), with Y; the relative density of each
species of particle, one must assume without proof that causality implies vsounq < 1; the
equilibrium inequality (2.2.1) again follows from local stability.

The speed of sound is a measure of the stiffness of the EOS. The well-known upper
limit on the mass of a neutron star and a corresponding upper limit on its radius are
obtained by using the stiffest EOS consistent with causality and with an assumed known

form at low density. That is, above a density €yaicn, the EOS is given by

P — Pmatch = € — €match; (222)

where puaten is fixed by continuity to be the value of p at €yaen for the assumed low-
density EOS. The upper limits on mass and radius are then found as functions of the

matching density €patch-
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In this work, we again use an EOS of this form to find an upper limit on neutron-star
deformability. To be conservative, as our low-density EOS we choose the MS1 EOS [59],
which is among the stiffest candidate equations of state. Our matched causal EOS is then
given by

pusi (€), € < €match
p(e) = (2.2.3)

€ — Ematch + PMS1(Ematch); € > Ematch-
In computing the deformability, we consider only irrotational neutron stars; and in esti-
mating the effect of tides on the inspiral phase, we neglect resonant coupling of tides to
neutron-star modes. Tidal deformation of slowly rotating relativistic stars is treated by
Pani et al. [60]; and Essick et al. [61] argue that tidal excitation of coupled modes may

alter the waveform in BNS systems.

2.2.2 Static, Spherical Stars

We next construct the sequence of static spherical stars based on the causal EOS (2.2.3).

We numerically integrate the Tolman-Oppenheimer-Volkoff (TOV) equation [62],

2m\ dp 1 3
l-—)—=—-= 4 2.2.4
( " ) = T2(e+p)(m—|— Trop), (2.2.4)

where m(r) is the total mass-energy inside radius r, related to € by

dm

- = drre. (2.2.5)

A member of the sequence is specified by its central density €.. Its circumferential radius
R is the value of the Schwarzschild coordinate r at which p(r) = 0, and its gravitational

mass is M = m(R).

2.2.3 Calculating the Tidal Deformability

The departure of the inspiral of a BHNS binary from point-particle (or spinless BBH)
inspiral depends on the tidal deformation of the neutron star due to the tidal field of its
companion. For large binary separation, the metric near the neutron star can be written

as a linear perturbation of the Schwarzschild metric of the unperturbed star that has two

8
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parts: The tidal field of the companion, expressed in Schwarzschild coordinates about
the center of mass of the neutron star, has the form of an external quadrupole field; and
the induced quadrupole distortion of the neutron star gives a second quadrupole contri-
bution to the perturbed metric. That is, outside the support of the star, the quadrupole

perturbation is a sum,
(sgaﬁ == 5external gaﬁ + 5induced gaﬁ, (226)

of two time-independent solutions to the field equations linearized about a vacuum
Schwarzschild geometry. In a gauge associated with asymptotically Cartesian and mass

centered coordinates, the contributions to the perturbed metric have the form
Oexternal Jtt = —T’Q&jninj + O(r), (2.2.7)

with no r—2 contribution, and

3 A
dinduced it = ﬁ@m <7”LZ7”LJ — §5U> +0O(r™). (2.2.8)

Here n’ = z'/r is an outward-pointing unit vector, &; is the tracefree tidal field from the
black hole, and @;; is the neutron star’s induced quadrupole moment. The quadrupole

moment tensor ();; is proportional to &;;,
Qij = — A&, (2.2.9)

and the constant of proportionality A is the tidal deformability of the neutron star. It
measures the magnitude of the quadrupole moment induced by an external tidal field and
is proportional to the (dimensionless) ¢ = 2 tidal Love number [63]

3\

k’2:2—R5.

(2.2.10)

After constructing the one-parameter family of spherical stars satisfying Eqs. (2.2.3),
(2.2.4), and (2.2.5), we tidally perturb them, compute k2 and the radius R of each star, and
then find the tidal deformability A from Eq. (2.2.10). To calculate ks, we use the method
described by Hinderer [64]: A perturbation of the spherically symmetric background
metric

g = —c¥dt* + dr® + r*(df* + sin® 0d¢?), (2.2.11)

1—2m/r
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with v(r) determined by

2m\ dv 1 3
is found in the Regge-Wheeler gauge [65], with dg a linear, quadrupolar, static, polar-

parity perturbation given by [64] 2

0g =(—e™dt* + ) H Yo,(0, ¢)

1-— 2m/rd
+ r%(d6?* + sin? 0d¢?) K Yo (6, ¢), (2.2.12)

where H and K are both functions of r. The perturbed Einstein equation gives a differ-

ential equation for H [64]:

2q (2 H[2 2
021 (1——m>+d—[———m—|—47r7“(p—e)]

dr? r dr |r 72

6 e+p

“H|= —dn(5eropr L
LQ ”( T dp/de)

S

In vacuum, H can be written as a linear combination of PZ(r/M — 1) and Q3(r/M — 1),

where P? and Q3 are the £ = m = 2 associated Legendre functions. When expanded
in powers of M/r at infinity, Pi(r/M — 1) = O(M/r)? and Q3(r/M — 1) = O(r/M)%.
The coefficient of P} is therefore related to the quadrupole moment of the star, and the
coefficient of Q3 is related to the tidal field applied by the black hole. By matching H(r)

and its derivative across the surface of the star, one can show [64]

ko =§C5(1 —20)*2+2C(Y —1) = Y]

x {2C[6 — 3Y +3C(5Y —8) + 2C*(13 — 11Y))
+2C3(3Y — 2) +4C* (Y + 1)

+3(1 - 20)*[2 — Y +2C(Y — 1)]log(1 — 2C)} (2.2.13)

2Note that, because this gauge does not conform to the constraints of an asymptotically Cartesian

and mass-centered chart, there are additional terms in the expansion of the asymptotic metric.

ol L) fyl_i.lsl
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where C' = Mys/R is the compactness of the star, Y = RH'(R)/H(R), and R is the
radius of the star. Since ks depends on Y and not H or H' individually, Postinkov,

Prakash, and Lattimer [66] and Lindblom and Indik [67] define

y(r) = TZ((:)) ,

which gives rise to the first-order differential equation

dy v  r+4nrd(p —e) 4(m + 4mr3p)?

dr 1 r(r —2m) r(r —2m)?

6 4rr? (e +p)?
- 5e +9 —.
+’r’—2m r—2m erEpT edp/de

(2.2.14)

To find Y = y(R), we numerically integrate Eq. (2.2.14) and evaluate y at the surface of
the star.

Despite appearances, the expression in curly braces in Eq. (2.2.13) is O(C?) due to
cancellations of terms in curly brackets that are polynomial in C' with terms from the
expansion of log(1 — 2C). For stars of small compactness, calculating ko directly from
Eq. (2.2.13) is difficult because it requires that both the numerator and denominator of
the right side are accurately calculated to a large number of decimal places. A calculation
this accurate is challenging due to errors introduced while finding the surface of the star,
where p — 0, and therefore the radius R. As a result, we expand ks to 20 orders in
C. Since ky is O(CY), this allows for much more accurate results for small C. The

compactness has a maximum value of 1/2, so this expansion converges for all stars.

2.2.4 Estimating the Gravitational Wave Phase Shift due to Tidal Deforma-
bility

The tidal deformability A defined in the last section accurately describes the actual de-

formation of a neutron star in a binary system only when the neutron star is far from the

other compact object. This is for several reasons: As the neutron star approaches the

other object, linear perturbation theory and the assumption of a static spacetime used to

define A\ break down; higher-order multipoles in the metric become important; as the star

spirals in, its orbital angular velocity increases and becomes comparable to the frequencies
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of the star’s normal modes, and this enhances the star’s response to the tidal perturbation
[45]; and, finally, the neutron star may be tidally disrupted before merger. Nevertheless,
the tidal deformability turns out essentially to determine the departure of gravitational
waveforms from those spinless BBH inspiral in numerical simulations [54, 68, 69].

A post-Newtonian expansion [44] describes the effect of tidal deformability on the

phase of the gravitational waveform to linear order in A:

3A
A(DPN = —%(WM][)5/3 [Clo -+ Gl(WMf)Q/S} s (2215)

where A® is the difference in gravitational wave phase between a spinless BBH and a
BHNS binary, A = )\/MI%S is the dimensionless tidal deformability, M = Mgy + Mys is
the total mass of the binary system, n = Mgy Mygs/M? is the symmetric mass ratio, f is
the linear frequency of the gravitational radiation, and ag and a; are functions of n:

ap = 12[1 + Ty — 31n* — /1 — 4n(1 + 9n — 119%)],

585 [, 3775 389 , 1376
28 2347 ¢ T T 17"

4243 6217 , 10
B P W it i A |
"(+234 234 9")}

Where Eq. (2.2.15) is valid, in the early inspiral when the frequency f is low, it allows

a] =

us to easily compute the phase change (the amplitude of the waveform is also affected
by tidal deformability, but in this regime the difference in amplitude is small). However,
tidal effects are largest during late inspiral when the frequency is high.

To extend the analytic computation to late inspiral, Lackey et al. [54] fit the amplitude
and phase of the gravitational waveforms of neutron star-black hole inspirals to the results
of numerical simulations, for black hole spins ygg between -.5 and .75, and mass ratio
Mgy /Mys in the range 2 to 5. In these simulations, the neutron stars are modeled
as piecewise polytropes. The resulting expressions (below) depend on post-Newtonian
theory for low frequencies, when the neutron star is still far from the black hole. At high

frequencies, the fits to numerical results take over:

Apn, Mf < .01
A= (2.2.16)

APNe_nAB(AvnvaH)(Mf_'01)37 Mf > 0]_

12

www.manaraa.com



Adpy (M f), Mf <.02
Ad =

—nAE(n, xeu)(M f — .02)%3 4 Adpn(.02) + (M f — .02) AP, (.02), Mf > .02.
(2.2.17)

Here the subscript PN indicates the corresponding result from post-Newtonian theory; B
is a function of A, n, and ypg; and F is a function of n and ygy. The parameters of B

and E were determined by the numerical fit. In particular,

— ybotbintbaxsn cot+cintceXBH
B=e + Ae ,
with

{bo, b1, by} = {—64.985, —2521.8, 555.17},

{co, 1, 2} = {—8.8093, 30.533, 0.6496}

as the fitting parameters. Similarly,

— ,90+911M+92XBH+T93MXBH
E=e ,

with
{90, g1, g2, g5} = {—1.9051, 15.564, —0.41109, 5.7044}.

The part of B that is independent of A is sensitive to the binary parameters due to the
large fitting parameters by, by, and by; it can be as large as ~ 3 for large mass ratio and
positive black hole spin and essentially zero for small mass ratio and negative black hole
spin. The coefficient of A in B varies between ~ .002 and ~ .2, depending on the same
binary parameters. As we will see, A itself is very sensitive to the mass of the neutron
star. Meanwhile, F varies between ~ .6 and ~ 9, with typical values of ~ 2.

While high tidal deformabilities increase |A®| relative to a point-particle waveform at
a given frequency f, they also cause stars to be tidally disrupted earlier in the inspiral,
damping the resulting gravitational waves. We define the cutoff frequency feuion to be
the frequency at which effects from tidal deformation dampen the amplitude by a factor

of e relative to the post-Newtonian waveforms. To estimate the total effect of tidal
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deformability on the phase of the waveform throughout the inspiral, we chose to evaluate
AD at feytoft-

The errors in the fitting parameters reported in [54] correspond to errors in
AD(M feoutorr) of ~15% for typical binary parameters. The Ad-values reported below
should therefore not be taken as accurate predictions of the tidally-induced phase shift.
Still, we expect that applying this fit to the matched causal EOS yields an upper limit on
|A®| with roughly the same error, especially considering the emphasis in [54] on avoiding
over-fitting and the lower errors reported for larger A-values. A more accurate calculation
of the phase shift from BHNS or BNS systems with our causal EOS requires numerical

simulations (now in progress for BNS systems [70]) or use of the EOB formalism.

2.3 Results

Most neutron stars observed by gravitational waves in binary inspiral are likely to have
masses in or near the 1.25 My to 1.45 M, range seen in binary neutron star systems,
a range consistent with formation from an initial binary of two high-mass stars. We
will see that the causal limit on the dimensionless deformability A is a monotonically
decreasing function of M and is therefore more stringent for higher mass stars. On the
other hand, the fraction of matter above nuclear density is smaller in a low-mass neutron
star, and that fact limits the effect of a causal EOS above nuclear density. The net result
is that the limit on A set by causality is close to the values of A associated with candidate

neutron-star EOSs for matching densities near nuclear density.

2.3.1 Effect of Matching Density on Constraints

To understand the results we present in this section, it is helpful first to consider models
for which the causal form (2.2.2) extends to the surface of the star, where p = 0. (Here
we follow Brecher and Caporaso [56] and Lattimer [57].) That is, we consider models
based on the EOS

P = € — €s, (2.3.1)
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and having finite energy density e at the surface of the star. Because the only dimen-
sionful constant is eg, having (in gravitational units) dimension length2, and the mass

M and radius R each have dimension length, we have the exact relations
Mupax €572, Riax o €577, (2.3.2)

where Rp.x is the maximum radius among models with central density greater than
€nue (low-density models have larger radii). Because the deformability A\ has dimension
length®, we similarly have

Amax < €577 (2.3.3)

Using this truncated causal EOS is equivalent to taking €5 = €paten in the matched causal
EOS and discarding the envelope of the star below €patch-

We emphasize that the truncated EOS (2.3.1) is used only heuristically, to explain the
near power-law dependence on €y, Of the maximum mass, radius, and deformability.
(The exact dependence of the maximum mass, radius, and deformability on €paten 1S
reported below.) Because the truncated EOS sets the pressure to zero below €paten, it
underestimates the maximum radius and deformability. As noted earlier, to obtain a
conservatively large upper limit on maximum deformability, we use the matched causal

EOS (2.2.3), which has a stiff candidate EOS for € < eyaten->

3 There is something paradoxical in using the truncated EOS (2.3.1) as an approximation to the EOS
that gives the largest possible neutron stars: As Lattimer [57] points out (following Koranda et al. [71]),
this same EOS gives maximally compact neutron stars, stars with the smallest possible radius for a given
mass, among all EOSs consistent with a maximum mass at or above a largest observed value, Mypserved-
In these and other papers [72, 73], Eq. (2.3.1) is chosen so that the softest possible EOS (namely p = 0)
is used up to high density; the stiff causal EOS above that density then allows Myax > Mobserved- The
resolution is this: For a fized mazimum mass, Eq. (2.3.1) yields neutron stars with the smallest possible
radii. On the other hand, for a fived €matcn (i-e. for a given density up to which we assume a known
EOS), Eq. (2.2.3) gives neutron stars with the largest possible radii; and, for low matching and surface
densities, the difference between the matched causal EOS (2.2.3) and the truncated EOS (2.3.1) becomes
negligible. Equivalently, €pnatecn — 0 corresponds to M.« — 00, and the difference between the softest
and the stiffest possible EOSs vanishes as M4, — oo. Physically, this happens because a stiff EOS is

required to support large masses.
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Figure 2 : The (a) maximum radius, mass, and (b) tidal deformability are plotted against the matching
density. The behavior of all three quantities follow a power law except at high €yatcn, with the best-fit
lines given by Eq. (2.3.5).

For €qaten S €nue, Where

mue = 2.7 X 10" g/cm?® (2.3.4)

is nuclear saturation density (the central density of large nuclei), the contribution of the
envelope to mass and radius is small enough that the dependence on €,,¢cn is very nearly
the dependence on €g in the truncated star: M., and R,,.x are each nearly proportional

—5/2

match?

—-1/2

mateh? where M, .« is the maximum neutron-

to € and Apax is nearly proportional to e
star mass consistent with causality and with a low density EOS below €aten; and Riax
and A\ are again the corresponding maximum radius and deformability among models
with central density greater than €,,.. This behavior can be seen in Figs. 2(a) and 2(b),

where linear least-squares fits to the leftmost 10 data points in each plot satisfy

Mipaxe = (4.1 M) (ematen/€nue) %, (2.3.5a)
Ruax = (17 km) (€maten/€nue) ~ %, (2.3.5D)
Amax = (1.3 x 10°"g cm? 5?)(ematen/€nue) 2. (2.3.5¢)

The rightmost data points in each plot diverge from the line because, at higher matching

densities, a larger envelope obeys the low-density (MS1) EOS.

ol L) fyl_i.lsl
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Figure 3 : The dependence of the dimensionless tidal deformability Ay 4 of 1.4Mg stars on matching
density is shown on a log-log plot. The behavior approximates a power law for € < €., with the best
fit given by Eq. (2.3.6).

Of greater astrophysical relevance than the upper limit on A, however, is the con-
straint on the dimensionless tidal deformability, A = A/M%g = ko R%/M?®, that governs
the waveform of a binary inspiral. As we will see below, because of the factor Myg, A
is monotonically decreasing with increasing mass for central density above €yaen. The
physically interesting constraint on A is then a constraint at known mass: Inspiral wave-
forms detected with a high enough signal-to-noise ratio to measure their tidal departure
from point-particle inspiral will also have the most accurately measured neutron-star
masses. The dependence of A on €,,,¢an for fixed mass cannot be found from the previous
dimensional analysis, but it is easy to see that A(M, €yaten) i @ monotonically decreasing
function of €yaten: AS €maten increases and less of the star is governed by the stiffer causal
EQOS, the star becomes more compact: R decreases at fixed M. In addition, as the density
profile becomes more centrally condensed, the tidal Love number ky decreases, because,
for a given radius, the external tidal force has less effect on a more centrally condensed

star. Decreasing R and ky gives a sharp decrease in A, as shown in Fig. 3 for a 1.4M
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star. For .33€nue < €maten < 1.2€44c We find a near power-law dependence,

A1.4 = 2400(€match/€nuc)_1.8- (236)

2.3.2 Comparison between Constraint and Results from Candidate EOSs

Y SLy 250 —— Matched Causal
: meAr N1 - MSI
1 H4 H4
i - - MS1 2.0 MPALI
300 —— Matched Causal N;’ —— SLy
o} - 3)
S5 on
= | %
2.0 7~ -
N
\ ~
1.5 \
\
1.0- |
10 12 14 1.0 1.5 2.0 2.5 3.0 3.5 4.0
R (km) M (Me)
(a) (b)

Figure 4 : (a) The mass-radius relation for the matched causal EOS with €patcn = €nuc and for candidate
neutron-star equations of state that display the range of uncertainty in stiffness.

(b) Tidal deformability versus mass for stars based on the same EOSs. The top solid curve, displaying
the tidal deformability of stars based on the matched causal EOS, is an upper limit set by causality on
tidal deformability. Stars based on softer EOSs have smaller tidal deformabilities.

We begin by displaying the limit set by causality on the dimensionful tidal deforma-
bility A as a function of mass, with €,.¢cn taken to be €,,.. There is remaining uncertainty
in the equation of state at €,,., and we obtain a conservative upper limit by matching to
the MS1 EOS [59], which is particularly stiff for € < €yye.

The mass-radius relation for the family of neutron stars obeying the matched causal
EOS is indicated by “Matched Causal” in Fig. 4(a). As we saw in Egs. (2.3.5), matching
to MS1 below ey, is a weak constraint, giving M., = 4.1My and Ry > 18 km,
both significantly larger than their values for any of the candidate EOSs shown. These
candidate EOSs include SLy [74], which is one of the softest EOSs that allow for 2M,
neutron stars, MPA1 [75], which is slightly stiffer, H4 [76], which is stiff at low densities
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Figure 5 : The dimensionless tidal deformability A is plotted against mass for several EOSs. For any
given mass, the Matched Causal EOS places an upper limit on the value of A.

and soft at high densities, and MS1 [59], which is particularly stiff at all densities. The
maximum masses allowed by these EOSs are all between 2 and 2.8 M, and the radii are
all between 10 and 15 km.

In Figure 4(b), the top curve displays an upper limit on A as a function of neutron-star
mass obtained from the matched causal EOS. The comparison A(M) curves for the same
candidate EOSs of Fig. 4(a) show the decreasing deformability associated with stars of
decreasing stiffness and radius. Note, however, that the maximum value of A for each
EOS occurs at a smaller mass than that of the model with maximum radius. This is due
to the increase in central condensation as the mass increases, resulting in an decrease
in k3. The maximum of the A(M) curve for the matched causal EOS gives the mass-
independent upper limit A < 1.5 x 103" g cm? s?, for €mateh = €nue, With dependence on
€mateh given by Eq. (2.3.5¢) for smaller matching density.

The corresponding upper limit Apax(M) on the dimensionless deformability is given
by the top curve in Fig. 5, for €paten = €mue- (The dependence on €yuicn was shown in
Fig. 3 for a representative 1.4M, star.) Since A oc C7°, A is large for small masses and
relatively small for larger masses. As a result, it is not meaningful to speak of a mass-
independent maximum of A, but it is meaningful to compare A-values at constant mass.

The most striking feature of Fig. 5 is how close the curve A (M) is to the range of A
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Figure 6 : The estimated total gravitational wave phase shift A®(feutonr) corresponding to a BHNS
binary with Myns = 1.4 Mg and xgu = 0 is plotted against the mass ratio for several EOSs. For a given
mass ratio, |A®(feutorr)| is larger for stiffer EOSs, and the Matched Causal EOS provides a constraint
on it. In general, |A®(feutorr)| decreases with the mass ratio.

allowed by current candidate EOSs. This stringent constraint on A is in sharp contrast
to the larger departures of the curves giving Rp.x(M) and Ayax(M) in Fig. 4 from the
corresponding curves for candidate EOSs. For 1.4 M, stars, for example, it places the
constraint that A < 2300. For comparison, 1.4 M, stars resulting from the SLy, MPA1,
H4, and MS1 EOSs have A-values of 300, 490, 900, and 1400, respectively. Furthermore,
gravitational-wave data from the one BNS coalescence detected so far [6] has constrained
A observationally. In particular, with 90% confidence we now know [7] that 70 < A < 580
for 1.4 M neutron stars. These values are low enough to not only be consistent with our
upper limit Ap.x(M) but also to strongly disfavor MS1 as a candidate EOS.

One might naively expect |A®( feutorr)| to increase monotonically with A and therefore
to decrease monotonically with the mass Myg of the neutron star (note that, although
A® is positive when evaluated at a given time, it is negative when evaluated at a given
frequency). This is not the case, because while |A®| increases with A (and decreases
with Mys) when evaluated at a fixed frequency, fouor decreases monotonically with A
(and increases monotonically with Myg). That is, stars with high dimensionless tidal
deformability are tidally disrupted at a larger distance from the black hole, corresponding

to a smaller orbital (and gravitational wave) frequency. A neutron star with high tidal
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Figure 7 : The estimated total gravitational wave phase shift A®(fouos) corresponding to a BHNS
binary with Mpy = 4.5 My and xpn = 0 is plotted against neutron star mass for several EOSs. For a
given mass, |AD(feutorr)| is larger for stiffer EOSs, and the Matched Causal EOS provides a constraint
on it. The dependence of |A®(feuorr)| On neutron star mass is complicated and changes with the EOS
used.

deformability therefore has fewer cylces during which to accumulate phase relative to a
point-particle. As a result, the effect of Myg on |[A®(feutor)| is complicated, and depends
on EOS and the parameters of the binary.

Nevertheless, stiffer EOSs result in larger values of |A®| for given neutron star masses
or mass ratios. As can be seen in Fig. 6, |A®(feutor)| decreases with mass ratio for all
EOSs. On the other hand, |[A®( feutorr)| has complicated behavior with respect to neutron
star mass for all EOSs when the spin of the companion black hole is zero (Fig. 7). In
addition, one can see in Fig. 6 and Fig. 7 that |[A®( feutorr)| increases with the stiffness of
the EOS, and is largest for our EOS, but only by a few radians at most. Here, based on
our estimate of A®, the constraint set by causality is remarkably strong, stronger than
the already stringent constraint on A: A®,,,. (M) differs from its value for the stiffest
candidate equation of state by less than 14%. The strength of the causal constraint is
due to (a) the fact that A is largest at small mass, where the causal EOS governs the
smallest fraction of the star, and (b) a smaller cutoff frequency for the stiffest EOSs that

reduces the time over which the phase can accumulate.

As shown in Fig. 8, for a given black hole mass Mgy and zero black hole spin xgq,
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Figure 8 : The estimated constraint on A®(feutorr) is plotted against the mass of a neutron star for
several different black hole masses and a black hole spin of 0. We expect that the absolute value of A®
would be lower for any real BHNS binary. The constraint on |A®| decreases with both neutron star mass
and black hole mass.

|AD( foutofr)| increases with Myg for the Matched Causal EOS. In addition, for a given
Mxs, |AP( foutorr)| decreases with Mpy. Changing xpn can change the qualitative behavior
of |AD(feutoff)|, as can be seen in Fig. 9. In particular, a corotating companion black hole
tends to make |AP(feuofr)| increase with mass, while antirotating companions tend to
make |A®(feutorr)| decrease with mass. For a given Myg, higher (corotating) spins result
in smaller |A®( feutor)|, but the effect decreases with increasing Mys.

Figure 10 shows how |A®(feuor)| varies with mass ratio for several neutron star
masses and 0 black hole spin. For a given Mys, |[A®(feutorr)| decreases with increasing
mass ratio. For a given mass ratio, |A®( fouofr)| decreases with neutron star mass. The
effect decreases in magnitude as the mass ratio increases.

Finally, Fig. 11 shows |A®( fouofr)| varying with mass ratio for several black hole spins
and Mys = 1.4 M. |A®( feutorr)| decreases with mass ratio regardless of the value of xpy,
but for a given mass ratio, |A®( feworr)| decreases with ypy; it is smallest for corotating

black holes, and largest for antirotating black holes.
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Figure 9 : The estimated constraint on A®(feutorr) is plotted against the mass of a neutron star for
several different black hole spins and a black hole mass of 4M. Different black hole spins can change
how A® qualitatively changes with neutron star mass, and A® depends more strongly on x pp for smaller

neutron star masses than for larger neutron star masses.
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Figure 10 : The estimated constraint on |[A®(feutost)| for BHNS binaries with y g = 0 is plotted against
the mass ratio for several neutron star masses. |A®(feutor)| decreases both with mass ratio and with

neutron star mass.
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Figure 11 : The estimated constraint on |A®(feutost)| for BHNS binaries with Myg = 1.4 M is plotted
against the mass ratio for several black hole spins. The value of |A®(feutorr)| decreases with mass ratio
and with spin.

2.4 Conclusion

By using a stiffest causal EOS consistent with causality at high density, matched to the
MS1 [59] EOS below a density €maten, we have set upper limits on the quadrupole tidal
deformability A and on the dimensionless tidal deformability A as a function of neutron
star mass. The limit on A, given by Eq. (2.3.6) for a 1.4 M neutron star, is conservative,
because we have matched to an EOS (MS1) that is stiff below nuclear density: With this
low-density EOS and a match at e, the corresponding upper mass limit is 4.1M.. We
now also have observational reasons to believe that A cannot exceed our upper limit: the
gravitational-wave event reported in reference [6] constrains A for a 1.4 Mg neutron star
to be between 70 and 580 with 90% confidence. This disfavors even MS1 as a candidate
EOS, indicating that even our low-density EOS is stiffer than actual neutron star matter.
Using the constraint on dimensionless tidal deformability and the Lackey et al. analytic
fit to numerical data [54], we then estimated the induced phase shift of a BHNS inspiral
and merger waveform.

The implied upper limit on the accumulated phase shift |A®| at merger depends on
the parameters of the binary, but it is surprisingly close to the range of phase shifts seen

in candidate EOSs. Assuming one can neglect resonant interactions of the tidal field with
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neutron-star modes, we think this conclusion is secure. We emphasize, however, that our
upper limits on |[A®| rely on an analytic expression based on full numerical simulations
for models with a set of EOSs significantly less stiff than the matched causal EOS. Work
has begun on numerical simulations to obtain an upper limit on the departure of double

neutron star inspiral waveforms from the point-particle (or spinless BBH) case.

2.5 Appendix: Comments on causality and sound speed

With the assumption that the equilibrium equation of state of the neutron star and its
perturbations are governed by the same one-parameter equation of state, causality implies
dp/de < 1. That is, as mentioned in Section 2.2.1, the time-evolution of a barotropic fluid
is described by a hyperbolic system whose characteristics lie within the light cone precisely
when dp/de < 1 [77]. The frequencies of stellar perturbations, however, are too high for
the temperature of a fluid element and the relative density Y; of each species of particle
to reach their values for the background fluid at the same pressure: Heat flow and nuclear
reactions are incomplete.

Because of this, one cannot precisely identify the maximum speed of signal propagation

in the fluid with the equilibrium value

_|dp/dr
equilibrium . dE/dT .

If short wavelength, high frequency perturbations are too rapid for heat flow and for

dp
de

nuclear reactions to proceed, their speed of propagation is

Usound = \/ (Op/0¢€)|s ;.- (2.5.1)

One therefore expects causality to imply

ap

5| <L (2.5.2)

s,Y;

This is known to be true for a relativistic fluid with a two-parameter EOS of the form p =
p(€, s): Its dynamical evolution then involves heat flow and is governed by the equations

of a dissipative relativistic fluid. Causal theories of this kind were first introduced by
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Israel and Stewart [78, 79] and by Liu et al. [80]. The general class of such theories
was analyzed by Geroch and Lindblom [58], who pointed out that, for dissipative fluids

obeying p = p(e, s), causality implies the inequality (2.5.2),

dp

o <1 (2.5.3)

S

Now a star is unstable to convection if

dp

dp

- (2.5.4)

equilibrium s,Y; '
Thus, for a locally stable spherical star (a self-gravitating equilibrium configuration of
a relativistic dissipative fluid) based on a two-parameter EOS p = p(e, s), causality implies

dp

1. 2.5.5
I < (2:5.5)

equilibrium
Thus, at least for two-parameter dissipative fluids, one can rule out the possibility that
dispersion in a dissipative fluid could lead to a group velocity smaller than the phase
velocity (see, for example Bludman and Ruderman [81]) vsoung and thereby allow vgouna >
1 without superluminal signal propagation.

For a dissipative fluid obeying a multi-parameter EOS of the form p = p(e, s, Y;), we
are not aware of a general proof that causality implies the inequality (2.5.2). One has
only the weaker statement, for a locally stable spherical star based on an EOS equation
of state p = p(€, ), Vsouna < 1 implies the equilibrium inequality (2.5.5). There is one
additional caveat: The core of a neutron star is likely to be a superfluid, and taking that
into account could lead to small corrections in the speed of sound.

Finally, we note that for candidate EOSs, although the inequality vsounq < 1 is stronger
than the the equilibrium inequality (2.5.5) used to place upper limits on mass, radius and,
in the present paper, on deformability, the difference is small. The fractional difference

\/dp/d€|equilibrium - \/(ap)/(aeﬂsvyz (256)
(Op)/(9e)

is primarily due to composition (to the constant values of Y;), and it is less than 5%.

5Y;

(It is approximately half the fractional difference between the adiabatic index v = I'y
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and the index I' governing the equilibrium configuration; the difference determines the
Brunt-Vaiséla frequency, a characteristic frequency of g-modes, and an estimate can be

found, for example, in Ref. [82].)
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Chapter 3

Scalar Self-Force and the Method of
Hikida

3.1 Introduction

This chapter will center on work I did with Thomas Linz and my advisor Alan Wiseman,
with help from John Friedman. The results and methods of this chapter were previously
reported in Linz’s dissertation [83].

The end result of this work was an analytical Post-Newtonian expression for the self-
force on an accelerated scalar charge moving on a Schwarzschild background. Before we
can understand that result, we must discuss black hole perturbation theory in general,
and specifically the method pioneered by Mano, Suzuki, and Takasugi [84] to solve for
homogeneous solutions to the Teukolsky equation [85]. We will then briefly introduce the
concept of self-force—where a particle feels a force due to its own field—and how self-force
calculations are carried out. Finally, we will introduce the algorithm developed by Hikida
et al. [8, 9] which allows us to solve for the self-force analytically to high Post-Newtonian

order.
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3.2 Black Hole Perturbation Theory

As mentioned in section 1.1, it is difficult to study systems of more than one object in
General Relativity. One way to do so is to consider small perturbations to known so-
lutions of Einstein’s equation. The next two chapters will consider perturbations to the
Schwarzschild spacetime, which describes a non-rotating black hole. The Schwarzschild
spacetime is a special case among black hole spacetimes. The Kerr solution to Einstein’s
equation describes spinning black holes, and the Kerr-Newman solution describes elec-
trically charged black holes. In reality, we do not expect black holes to be electrically
charged, so the Kerr solution describes the most general astrophysical black holes. In

Boyer-Lindquist coordinates the Schwarzschild solution’s spacetime interval is given by

1

dﬁz—ﬂmﬁ+fwﬂﬂ+ﬁwﬂw%mwwﬁ (3.2.1)
with
2M
flr)=1-—-.

3.2.1 The Bardeen-Press Equation

The Bardeen-Press equation [86] describes scalar perturbations to the Schwarzschild

spactime:
aw%WW]+WﬁSiﬁy+¥L%@M@H"i—y
g g f 7t sing sin6 ?
. cost r—3M s s
+2Z8m8¢ —2s f 815 - Sin2 0 + 8(8 + 1)] } 2/13 = 471'7“2(7"2]") TS, (322)

where s is the spin-weight of the scalar field and T, is a source term. The Bardeen-
Press equation is a specialization of the Teukolsky equation [85], which gives solutions
to perturbations to the Kerr spacetime. This chapter studies a scalar (s = 0) field,
but we keep s general for now, because in the next chapter we will study gravitational

perturbations, which involve scalars of spin-weight +2.
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3.2.2 The MST Method to solve the homogeneous Teukolsky Equation

Mano, Suzuki, and Takasugi [84], hereafter referred to as MST, developed a method
to solve the homogeneous Teukolsky equation in the frequency domain. MST begin by
writing

ws = eithszEm(97 (b)Rfmw(r)a

where ,Y;,,(0, ¢) is a spin-weighted spherical harmonic,' satisfying

cos s
sin® 0

(3.2.3)

1 . 9 .
@ag(SID 68.9) + 3¢ + 2

5 1S———
sin® @ sin’ @

The spin-weighted spherical harmonics are generalizations of the spherical harmonics
0Y7.m; their properties will be discussed more in the next chapter. After separating the

variables in this way, the equation for Ry, becomes

o [y e
+ () {%w {rw + 2is (1 - %)} + 00+ 1) + s(s + 1)} Rimw = 0. (3.2.4)

Note that the above equation is independent of m, so that subscript is superfluous.
From here on, we drop it, and refer to Ry, as Ry, instead?. MST find two forms of
analytical solutions to Eq. (3.2.4): one as an infinite series of hypergeometric functions,
and one as a series of Coulomb wave functions. We will primarily use the latter, but the
former is necessary to mention because only they are regular on the horizon of the black
hole, corresponding to » = 2M. Therefore, we must use them to set correct boundary
conditions on the horizon.

To get the solution as a series of Coulomb wave functions, MST define ¢ = 2Mw,

IThe more general Teukolsky equation separates when the angular harmonic is a spin-weighted
spheroidal harmonic. Also, since the Teukolsky and Bardeen-Press equations are linear, one can write 4

as a sum over an infinite number of Fourier and spherical harmonic modes. For now, this is unnecessary.

2Note that this is not true in Kerr; the index m appears explicitly in the radial Teukolsky equation

in that case.
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2z =wr, and ( = z — €. Then, they write?

Ry, = ¢% = Sign(w) "¢ £,(0);

the relevance and value of v will soon become apparent. Note that our normalization

here differs from that of MST, Hikida et al., and Linz [8, 83, 84]. In particular, we put

~¥ out front. This is to ensure that w is never raised to the power

a factor of Sign(w)
of v; instead, |w| is. We will see the advantage of this normalization when we write our
final expression for ¢¥. Inserting this expression for Ry, in Eq. (3.2.2) gives the following

equation for f,:

€(s+ 14 ie)(1 — ie)

¢ fo

Cfl 4+ (¢ +2e+is)]f, =—eC(fl+ f,) +e(s+ 1) f, —

+ [0+ 1) — 3€® —ise]f,.

While this equation—particularly the right-hand side—appears intractable, MST employ
a trick: they subtract v(v + 1)f, from each side of the equation, where v is a heretofore

undetermined constant. The equation for f, then reads

CL+IC +2(e+is)¢ —v(v+ 1S,

UL+ 1) +els gy - LI IUZE

+ [l +1) —v(v+1) — 3% —iself.. (3.2.5)

o

MST then let v = ¢ + O(e), which makes Eq. (3.2.5) match the differential equation for
Coulomb wave functions in the limit ¢ — 0. This suggests a representation for f, as a

series of Coulomb wave functions:

oo

fl/: Z "

n=—oo

(v +1+s54ie),|°
Y, 3.2.6
(v+1—s+ie), Gntint ( )

with

(v+1—s+ie),
(21/ + 2)2n

3This notation differs from that of [84], in which ¢ is denoted by z and the Coulomb-type radial

Frpy = e75(20)"¢C Fiin+v+1—s+ie2n+2v+2;2i¢). (3.2.7)

function is denoted by RY. We choose our notation to match that of Hikida et al. [8]

SR fyl_i.lsl
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Here, we use the Pochhammer symbol (a), = I'(a + n)/T'(a), and denote by 1F; the

regular confluent hypergeometric function:

1F1(1,b27 :i(a)

pxt
(b)r k!
k=0
We expect that the series (3.2.6) will correspond to a power series in €.
What remains is to solve for v, which MST call the renormalized angular momentum,

and the coefficients a}. First, MST use the recurrence relations of the Coulomb wave

functions to show that a} satisfies a three-term recurrence relation:

Oy + Bty + Yty =0, (3.2.8)
where
,  den+v4+14s+icP(n+v+1+ie)
o =
" (n+v+1)(2n+2v+3) ’
(s + &)
V= A+ D+ (n+r)(ntrv+1) 428+ ,
b ( )+ ) ) (n+v)(n+rv+1)
and

_ieln+v—s+iel*(n+ v —ie)
T = (n+v)2n+2v — 1)

v

We can then introduce ratios of consecutive coefficients:

v
an

(3.2.9)

Ap—1 Ay g1 '
The ratios R? and L} can be thought of as continued fractions in the parameters appearing
in the recurrence relation for a/:
v

Tn «
R=—— Y= 3.2.10
By +an Ry By 4Ly ( )

We are free to choose af = 1, as this is essentially a choice of normalization for f,. Then,
we can solve for a” with n # 0 by repeatedly multiplying by the R to get the positive-n
coefficients, and multiplying by the L” to get the negative-n coefficients. At first, this
seems futile, since to know R} exactly, one must also know RY, and so on. However, to

find the positive-n coefficients to finite order in ¢, it is sufficient to know that R? = O(e)

for all n > 0. This follows from that fact that, for all n > 0, a¥ = O(e), 7% = O(e), and

SR fyl_i.lsl
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pY = O(1). The negative-n coefficients are a bit more complicated; we will discuss them
shortly.
In the meantime, it will be useful to see that we can simultaneously solve for v by

requiring that repeatedly applying R or L” gives a consistent set of coefficients; in

particular, it must be true that

RV, LV =1. (3.2.11)

If we apply the above equation to the n = 0 case and write
v="_+ Z Upe®, (3.2.12)
k=1

we can solve for vy. First, we see immediately from 3.2.11 that L§ = O(e!), since
RY = O(€). This in turn requires that 85 ++4L”; = O(e?). By looking at the expressions
for o, B%, and 7, one can easily see that, as long as £ > 0, L” ;| = O(¢).* Since v§ = O(e),
it must be true that 85 = O(e?). This requirement, coupled with the expression for 3,
leads to the knowledge that

1/1:0.

Now that we know that v = £+ O(€?), we can study the behavior of a” for negative n.
For most negative values of n, L? = O(¢), but there are two exceptions. Since o) = O(1)

when n = —¢ —1° and % = O(¢?) when n = —20 — 1,
LY, ,=0(), L', ,=0("). (3.2.13)

The coefficients therefore behave in the following ways, depending on how n compares to

4With a bit more effort, it is also possible to show that LV = O(1) in the £ = s = 0 case. Even then,

the value of v; ends up being the same as it is in the nonzero-¢ situation.
®Again, there is an exception in the s = 0 case, where o, = O(e?) when n = — — 1.
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1, n =20,
O(elh) —1>n>—/,
a, = § O("), n=—0—1, (3.2.14)

O(e¥2), n=-20-1,

\O(e|"|_3), —20 —2 > n.
To get f, to finite order in €, then, one only needs to solve for a finite number of coefficients.
We will see later that expanding f, in € and z results in a Post-Newtonian expansion for
the self-force. Thus, we have exactly what we need to find the self-force analytically to
finite Post-Newtonian order.

It is instructive to solve for v and a” explicitly to O(e?), so we will do so here. We
start with v, and for now we assume ¢ > 1 to avoid the special values of n mentioned
above. To solve Eq. 3.2.11 to zeroth order in €, we need o”,, 8%, af, 8§, V5, o, By,

v, By, and 5 all to leading order in €. Remember that 85 = O(e?) and contains vy at

leading order. Eq. (3.2.11), after setting n = 0 and v = £ + ve? + O(€?), then gives

(C+1+8)2(0+1—5)?

5 (Z+3)2([_3)2 + 0(62) fry 1,
(20 +1)(20+2)(2 +3) (20 + Do + 2+ iy + bl
so that
R S B 2 (L4 —5)? (C+1+5)*(l+1—s)?
2T 2+ 1 ((0+1)  20+1)(20(20—1) " (20+1)(20+2)(20+3)]"
(3.2.15)

Now for the a}’s. Again, for now we assume ¢ > 1. Since the numerators of R} and
LY are O(e) and the denominators are equal to —((£+ 1)+ (n+£)(n+ £+ 1)+ O(e?), we
only need to know the denominators to leading order to get a’ to second order in €. To

get ai = Ry, we need 7{ to second order in €. To get ay = R5RY, we only need R5—and

therefore 74 to first order in e. Similar arguments apply to a”; and o, for the purpose

SR Zyl_i.lsl
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of calculating a”, and a”,. The results are

(0+1—28)2(+2—s5)?

= 500y )l o)l 1 3)262 +O(")

T Gl Sk (+1—s)? 2 3
Y= mrneir T rneir et o)
ag =1

v (€+8)2 ) (€+8)2

B 2 3
= e e’ o)
, (C+s—1)*+s)?,

S Y TN + O(e) (3.2.16)

For completeness, we will solve for 15 and the a’’s for £ = 0,1 as well. Since the
spin-weighted spherical harmonics vanish when ¢ < |s|, the £ = 0 case is only relevant for
s = 0. In this case, 3”7, = O(e?). As a result, we not only have to calculate L” |, but also
L”,, in order to find L§ to leading order in e. After doing the necessary calculations, we
find .

1 1
vy +2+ —+
2 Vg 1/22(—V2+%—%)

1
RiLy = ¢ + O(e).

Setting the above equal to one, we find an equation for vy:

7 7
0:V22(V2+6) <V2—6>

The appearance of 1/, in 5§ and 8%, precludes the apparent solution v, = 0. However,
we are free to choose v» = £7/6. Following Hikida et al. [8] and noting that v, < 0 for
every other value of ¢, we choose v, = —7/6. Because of the particularities of the £ =0
case, solving for the coefficients to second order in € requires knowledge of 3 and vy.
These are solved for by setting the O(¢) and O(e?) contributions to RYLY equal to zero.
This is quite cumbersome to do by hand, so here we simply report the results, obtained

with the aid of Mathematica:

V3 = 0
9449
7560

V4 =

One can find the nonnegative-n coefficients using the general-¢ expressions above. The

SR fyl_i.lsl
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negative-n coefficients, to second order in €, are as follows:

2 7. 1591,

vo_ = o O 3
1= 75 T 37" " aag5¢ T O
1 1
a’, = —§z'e + 5—462 + O(e)
2
(1113 - 562 + 0(63).

Now for the ¢ = 1 case, which is relevant when s is 0 or £1. These calculations are
much easier when we treat the s = 0 case separately from the s = +1 case. We will treat

the £ =1, s = 0 case first. In this case,

and Eq. 3.2.11 leads to

4
=1
15(31/2 + %) ’
so that
__ D
730
This leads directly to
1 1
a’, = gie — 662 + O(€*)
a’, = O(e).

When ¢ = 1 and s = 41, 44 L”; = O(e?), so knowledge of that term is unnecessary

for calculating Ly. We are therefore free to use the general-¢ expression for v, giving

47

Vo = —@

For the s = 1 case, finding the coefficients to second order in € again requires knowledge

of v3 and 4. Again, this is not very feasible by hand, and we simply cite the results

below:

1/3 — O

L _ 43908007

71064000
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For s = 1, then,

Y= %z’e — 1374162 + O(€)
a’, = i—gze - %62 O(€)
Y= —2220009 2+ 0(h)
While v remains the same after the replacement s — —s, the coefficients for s = —1 can

be found using the symmetry property reported in [87]:

2

(v+1+s+1ie),|” ,
ap (s)-

an(=s) = (v+1—s+ie),

Now that we know how to solve for v and the coefficients, we are ready to write ¢

explicitly:

(41— s+ie),
(2V+2)2n

¢y =e 2017 > al

(v+ 14+ s+ie),
(v+1—s+ie),

X (2iQ0) " Filn+v+1—s+ie2n + 2v + 2,2i(). (3.2.17)

Here, we can see the advantage of our normalization of ¢, which results in a factor of
|2¢|” in front of the sum instead of (2¢)”. First, note that the expressions for o, g%, v~,

and therefore RY, L, v, and a/, all satisfy the property

n’
X = X‘e—>—ea

where X stands for any of the afore-mentioned quantities. Also note that both € and ¢
are both equal to positive quantities multiplied by w. Then it is clear from Eq. (3.2.17)
that

$r = (—1)° P (3.2.18)

This symmetry property is not satisfied if the normalization of Hikida and Linz [8, 9, 83]
is used. In particular, the quantity (2¢)” goes from real to complex when w goes from
positive to negative because v is not an integer. We will see later that our normaliza-

tion also makes it easier to construct Green functions that satisfy the proper boundary

conditions.
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The homogeneous Bardeen-Press equation is second-order and linear, so there are
two linearly independent solutions to it. Since Eq. (3.2.5) remains the same after the
replacement v — —v — 1, we can create another solution, ¢_*~!, by replacing v in Eq.
(3.2.17) with —v — 1. MST [84] show that ¢% and ¢_”~! are linearly independent.

Finally, we need to mention here that the sum in Eq. (3.2.17) only converges if { # 0—
that is, when r > 2M outside the event horizon [84]. In order to construct a Green’s
function that satisfies proper boundary conditions on the horizon, then, we need another
linearly independent pair of solutions that are regular on the horizon. MST finds such a
pair, called RY and R;” "' and written as series of hypergeometric functions. Remarkably,
they use the same coefficients {a%} and renormalized angular momentum v. With the
definition = = —(/e, R} is given by

, _ I'l—s—2ie)I'(2n+2v+1)
RY = % (_g)V—s v
0= =) Za”F(n—l—V—i—1—ie)F(n+u+1—s—ie)

n=—oo

1

X (—xz)"y Fy (—n — VvV —i€,—n —V+ S+ i€ —2n — 2, —> ,
x
(3.2.19)

while R;”"" is obtained by replacing v with —v — 1. The solutions RY and Ry~ ! are
regular everywhere except in the limit || — oo, corresponding to r — oco. Furthermore,
in the region 2M < r < oo where both Rj and ¢” converge, the two types of solutions

are related by a constant factor:

R\ = K'¢, (3.2.20)

with

K! = |2¢| 7€

I'(1—s— 2ie) if(n+u+1+ie)f‘(n+2y+1) .
a
IU(1 4+ v — s +ie)|? nll'(n+v—1—ie) "

2 1 -1
(—n)!(2v + 2)

(v+14s—ie),
(v+1—s+ie),

v
n

(3.2.21)

Qa
n

n=—oo

3.2.3 Solving the sourced Bardeen-Press equation with a Green’s function

We seek to solve the sourced Bardeen-Press equation, which we plan to do with the use

of a Green’s function. That is, if we let D be the differential operator on the left side of
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Eq. (3.2.2) so that
Dip, = dnr*(r? f)°T.

we seek a function G(z,2’)® such that
DGz, ") = r26W (x, 2"), (3.2.22)
so that a solution to Eq. (3.2.2) is
I / 4a'Gle, o) [P £ ()] Tu(e). (3.2.23)

Here, = stands for the Schwarzschild coordinates (t,7,6, ¢), and by 6% (z,2’) we mean

390,y = OB =1 iifg )e'> (6-9)

Y

while by d‘z’ we mean

d*a’ = \/—det(g,,s) dt'dr’dd'd¢,

and g+ is the metric in the primed coordinates. Noting that

1 [ ~ /
t—1t) = 2—/ dwe= =)
TJ_

and

5(0—0)5(6 — ¢) i S Y0, 0) Y (0, 8,

sin 6
we also decompose the Green’s function into Fourier and angular harmonic modes:
1 —
G(z,a") = %/ dwezl: Zéggw o )e @) Y (0, 0)Y (0, &), (3.2.24)

Eq. (3.2.22) then leads to an equation for the radial part of the Green’s function:
d sr1dge(r, 7’ s [rw , 3M

o [( 2yttt ) cgr )] + (r?f) {7 [rw+223 (1 — 7)]

H(l+ 1)+ s(s+ 1)} goo(r,7)

=4(r —1'), (3.2.25)

6The Green’s function we define here is the additive opposite of that defined in Hikida. This is because

Hikida anticipated that 7Ty < 0.
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which is Eq. (3.2.4) with a delta function source. This problem thus reduces to solving
for a one-dimensional Green’s function. At this point, it is important to choose retarded
boundary conditions for GG so that we get a causal solution for ¢,. This means that our
solution must have upgoing radiation—that is, outgoing radiation at future null infinity—
and ingoing radiation—that is, ingoing radiation on the future horizon. Mathematically,
g ~ elert2MIn(wn)] /p1=2s a5 1 5 o0 and g ~ (—x) *e@EF2MINED) a5 4 = (/e — 0.

Following Arfken [88], we write

?n(r<)¢ﬁp(7’>>
W&U((biyn? ﬁp) ’

where ¢y, is a solution to the homogeneous radial Bardeen-Press equation with upgoing

Gtw (Ta T/) =

boundary conditions, ¢!, is that with ingoing boundary conditions, 7~ is the greater of r

v v

and r’, r— is the lesser of r and 7', and Wy, ( p Y ) is constant in r and proportional to

the Wronskian of ¢}, and ¢i:

Waal i 6) = () | gt gt — gt

up’ ¥in up% in in 7 up

To construct G(x, '), we now need to find the linear combinations of ¢% and ¢_*~!
that give ¢y, and ¢f,. We start with ¢y . Following the notation of Hikida et al. [8], we

seek the constant Y such that
o = Ve o

gives outgoing radiation at infinity. To find %, we need to derive the behavior of ¢ and
#7771 in the limit 7 — oco. We start with an identity for the confluent hypergeometric

function:

()
['(b—a)

I'b) . sion(s i o
+ Féa)) 671ﬂ51gn(\s(z))(bfa)€zU<b —a; b, efmSlgn(\s(z))Z>

1Fi(a;b;2) = e”Sign(g(Z))aU(a; b; 2)

)

where U(a; b; z) is the irregular confluent hypergeometric function. This is useful because

U has a simple asymptotic form:
lim U(a;b;2) =277
zZ—>00
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Before going further, we define the following constants:

Ai=v+1—5s+ie
A2 =v -+ 1 + s — 7€
B =2v+2,
which themselves satisfy the following properties:
Al = B - A2
Ay =B — A
Ay =1- Ay
A2|u—>—u—1 =1- Al
Now, when we insert the above identity for 1 F} into Eq. (3.2.17), we get
o = U7 (Q) + U3(¢),

where

Uy (¢) =e “[2¢1"¢™* > al,

n=—oo

(AZ)n
(Al)n

x (2iQ)"U (A1 +n; B + 2n; 2i(),

? (Al)n F(B + Qn) eiﬂ’a'w(A1+n)
(B)an [(Az + 1)

o0

g ; A2 n
7O = per 3 ar |

x (2i¢)"U(Ag + n; B + 2n; e ™+2i(),

? (Al)n F(B + 2”) e—iﬂ'aw(Az—i-n)
(B)Qn F(Al + n)

and

o, = Sign(w).

When we apply the asymptotic form of U(a;b; z), we find

(A2)n
(Al)n

corresponding to incoming radiation at infinity. Meanwhile,

—i(¢+In(¢))

~ e .

lim U = ——— (o) 7V (20)5 1% E a’l
¢ 1 ( ( ) ( ) n

? (A1), T'(B)
(B)an T'(Az)

elmow (A14n) ,

n=—oo

i(¢+1In(¢)) >
. - € . —v (o \—s—1+ie v
Cll)rgo Uy = W(zaw) (24) 7571 E a,

n=—oo
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corresponding to outgoing radiation at infinity. We are therefore seeking the value of 7%
such that

VO + o o U
We must now write ¢, v — 1 as a linear combination of U{’ and ﬁz” . By replacing v with

—v — 1, one finds U;”~! and U, ! such that

¢C—I/—1 _ ﬁl_y_l(C) + Uz—u—l(g)‘

Remarkably, it turns out that U;”~1(¢) o< U¥(¢) and Uy ”~(¢) o< U¥(¢). By using one of

the properties of the coefficients [87]

another property of the irregular confluent hypergeometric functions [89]
Ula;b;2) = 2" U(a —b+1;2 — b; 2),
and two properties of the Gamma function [89]

I'(z+1) = 2I'(2),

™

PP —2) = sin(7z)’

and a fair amount of algebra, one finds

1/+% F(Ag)P(Al) Sil’l’ﬂ'(l/ + 26) ~
( )F(B)F(B —1) sin(27v) vr©),

Ul—u—l (C) _ (_1)Se—i7fffw

and
L2 - B)I(A) 5,
(1 — A)T(B) 2

U;V—I(C) _ (Z'O_w)2u+1
Finally, we can solve for v such that the coefficient of U? vanishes. The result is
(AT (Ag) sinm(v + ie)
L(B)I'(B—1) sin(27v)

F'v+1—s+ie)l'(v+ 1+ s —ie)
['(2v + 2)I'(2v + 1) sin(27v)

,yé/ — _(_1)se—i7rcrw(z/+%)

= (-1)* (3.2.26)

X |:Sin2(7'('l/)€7r|6| — sinh(r|e|) + % sin(27v)e™l | . (3.2.27)
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Now, we need to find ¢}, equivalent to finding 52 such that

in»’
—v—1
i = O+ B0

has purely ingoing radiation on the horizon. MST actually define R, which satisfies

n’

exactly that boundary condition, before they define Rf:

[e.e]
Rl = e (—g) 57" Z ar oFi(in4+v+1—ie,—n—v—iel—s— 2iex).

n=—oo

MST then use a property of o F}, [89]

2Fi(a,b, 5 2) =%(—z)“’ 2 F) (b,b —c+Lib—a+1; 1)
z

L'(e)L'(b—a) 1
—2)% o F — l:a—b4+1;—
+F(b)F(c—a)( Z) 2f'1 { a,a C+ ya + 72 )
to show that
RY = Rb + RyV . (3.2.28)

MST later define R

v+, which has an outgoing radiative boundary condition on the horizon:

LW+ 1+ s+ie),(v+ 1+ i),
"v4+1—s—ie),(v+1—c¢),

Rl = e (=) (1-2)* 3 a

n=—oo

X oFi(n+v+1+ie,—n —v+ie; 1 + s+ 2ie; x).

The function RY,, can also be written as a linear combination of Ry and Ry”~'. To find
it, we again use the identity for o F} above to see that
, Tw+1l—s—ie)l(v+1—ic
T T4 1+ s+ie)D(v+ 1+ e
=, T+s+2ieT(2n+2v+1)
x _Z_ T

;6i6w(—$)u(1 _ x)—s

. —(—x)"

n+v+1—s—ie)l(n+v+1—ie)
1

X o F} (—n—V+ie,—n—y—s—z'e;—2n—2u;—)—l—(y—>—u—1),
x

where by +(v — —v —1) we mean to add the same expression with v replaced by —v —1.

Meanwhile, using another identity [89]
2Fi(a,b,562) = (1= 2) " Fy (e — a,¢ — by ¢; 2),
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we see that
- (1 —s—2ie)['(2n +2v + 1) .
(=)

RV: €T vl — —S v
o =€ (=z)"( x) Zooanf‘(n—{—y—}—l—ie)F(n—l—U—{—l—S—iE)

n——
1

X o F (—n—u—l—ie,—n—y—s_ie;_Qn_zy;_>'
o

By comparing the expression for R above with that of R, one can see that

R =ARy+A_, Ry, 3.2.29
out 0

where
CTw+1—-s—ie)l(v+1—ie)l'(1+ s+ 2ie)
T+ 1l+s+iel(v+1+ie)(1 — s — 2ie)

and A_,_; can be found by replacing v in the above expression with —v—1. Remembering
~1 converge, we now have an

that Ry = K/¢% in the region where both Ry and R,

expression for ¢¥ + ¢~ in terms of R, and RY:

- T'(2v +2) 1
v v p—v—1 _
ch +/Bc¢c |:]_—‘(y—|—1—8+26) Kg(A,,_A—y—l)
g T=) ! R,
‘T(—v—s+ie) Ko (A, —A,)] "
I'(2v +2) Ay
+ — .
[+ 13+ K2(A, — A
v F(_2V) AV z
TNy =5+ ie) Ko i(A, - A—v—l)] o

Since the coefficient of RY , needs to vanish,

5 = IF2v+2) I'(—v—s+ie) K v

¢ T(-2v) T(v+1—s+ie) Ky

—-1)° r 1 e)I’ 1—s—1

%2%'6‘2%1 (v+1+s+ie)l'(v+ s ZG)’F(V+1+iE)|2

F'2v+2)I'(2v +1)

X == = —L[esc(2mv) — cot(2mv) cosh(2me) + i sinh(2me)], (3.2.30)
where
=1 (v + 1+ ie), = (=1)" (v+1+s—ie),|
—(2 1)n . 2 1 o
[Zn v "(v+1—ie) ”] Lz:; n! (2v+ D (v+1—s+1ie), On

The last quantity we need to calculate for gy, (r,7") is Wy,. While we are free to get

and their derivatives, it is also useful to have a more explicit

wa dlrectly from ¢1n7 up’
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expression. To do this, we again follow Arfken [88] and note that

Wlot oz = Wik, o laesp | [ a2 D0 2

2 — 2Mr

L 12 —2Mr\ !
= WIg¥, ¢ lr=s (m) ;

where W{f1, f2] is the Wronskian of f; and f; and b is any constant. Since we understand

the behavior of ¢% and ¢_*~! at infinity, we will take the limit as b — co. The result is

2
v
an

(e o]

2v+1
: v —v—1 _ —25—17.—25—2
bliglow[ c7¢c ]|7'=b - 2 |w| b [ Z

(v+1+s—ie),
(v+1—s+1ie),

n=—oo

y [ Z (—1)"(V+1+S+ie)"az

(v+1—s—ie),

n=—oo

This means that the Wronskian at any r-value is

(v4+1+s—ie),
(v+1—s+ie),

v —p— e 2v+1 0 >
W[¢c7¢c 1] - - (TQ —2M’I") 1T|w| 2ot [ Z

= (v+1+s+ie),
E (-1
XL_ (=1) (1/+1—s—z'e)na ’
and Wy, (¢%, oo = (r? — 2Mr)* W [gY, o7 ] is given by
(v+1+s5—1ie),

Z (v+1—s+ie),

y [i (_1)n(y+1+s+z:e)na

2
v
an

ISEAN

v o —v— 2V+1 5—
WZUJ( c7¢c 1) 5 | —2

SN

(v+1—s—1ie),

] . (3.2.31)

It is easy to show that

W0, Sup) = (1= B29) We(67, 6.7 7).

We now know how to construct g, (r,r") and therefore G(z,z"), which will be indispens-

able in finding the self-force on a point particle orbiting a Schwarzschild black hole.
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3.3 Scalar Self-Force

For the rest of this chapter, we specialize to the scalar (s = 0) case. The source term is

Ty = —p in this case’, and the Bardeen-Press equation reduces to®
V VY = —4mp, (3.3.1)

where p is the scalar charge density, and we now refer to ¢y from the last section as .

We now wish to consider a scalar charge in circular orbit around a Schwarzschild black
hole. In particular, we take the charged particle to be small—both in the sense that its
volume is small compared to the black hole and in the sense that its charge ¢ is small.
The latter condition means that ¢’s influence on the gravitational field can be neglected,
and we can consider ¢ to be a scalar field on the background Schwarzschild spacetime.
The former condition leads us to treat the scalar charge as a point particle, so that p
is given by a delta function. This allows us to easily integrate the Green’s function we
derived in the last section against p to find the retarded scalar field .

However, there is a problem with this: namely, the retarded field diverges at the
particle’s position. Our goal is to derive the self-force F'* of the particle; that is, the force
that the particle feels due to its own field. Naively, we would try to take a derivative of
the field and multiply by the charge of the particle. The divergent field blows a hole in

this prescription. We therefore need a way to renormalize the field, so that

FR = lim PgViyt (3.3.2)

T—T0

exists, where 1! is continuous and differentiable at the particle. Meanwhile, Pg = 0§+
u“ug projects the force onto a direction perpendicular to u®; this keeps the scalar charge
constant and is conventionally used in scalar self-force work. We explain how to do this

in the following subsection.

THikida et al. [8, 9] implicitly choose Ty = —p/4m. This is not materially different and their expression
can be thought of as the result of defining the unit of scalar charge differently. Nevertheless, our results

will appear to differ with theirs by a factor of 4.
8Sometimes, the scalar field is defined to couple to the background spacetime via a term proportional

to Ry, where R is the Ricci scalar. A scalar field defined as it is here is referred to as minimally coupled.
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3.3.1 Mode-Sum Renormalization

Quinn’s axiomatic approach to renormalizing the field[90] is consistent with that of Quinn
and Wald [91] in the electromagnetic and gravitational cases. Furthermore, in the other
two cases Quinn and Wald [91] give the same results as Mino, Sasaki, and Tanaka [92].
Mino, Sasaki, and Tanaka arrived at the results in two other ways, one of which is referred
to as matched asymptotic expansions. It is that last method that is considered standard
in the gravitational case; Quinn’s axioms in [90] are more directly applicable to the scalar
case, and we use them here.

Quinn’s axioms are as follows:

1. Comparison Axiom: consider two point particles in two possibly different space-
times, each particle having scalar charge ¢q. Suppose that, at points zy and Ty on
their respective trajectories, the magnitude of the particle’s 4-accelerations coin-
cide. We may then choose Riemann Normal Coordinate systems about xy and Zg
for which the components of the 4-velocities and 4-accelerations coincide: u® = u®
and a® = a®. Let " and ¢ be the scalar fields of the particles. With the Rie-
mann Normal Coordinates used to identify the neighborhood around zy with that
around Z the difference between the renormalized scalar self-forces, F*® and FR,
is given by the limit as » — 0 of the gradients of the fields averaged over a sphere

of geodesic distance r about x:

R _ FR,a _ C]ll_{% <vo¢wret o va&ret>r . (333)

2. Flat Spacetime Axiom: let 12! be the scalar field with advanced boundary condi-

tions. If, for a uniformly accelerated scalar charge in flat spacetime,
T 1 Tret Tadv
b= (0 + )

then
FRe = (3.3.4)

at every point along the particle’s path.
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These two axioms allow us to write the scalar self-force on a particle in Riemann Normal

Coordinates as

Fﬂha ::q19§5<‘7a¢fﬁ __Vﬂ%;> ) (3:&5)

T

While a useful starting point, Quinn’s axioms are difficult to use for practical cal-
culations. Thankfully, much work has been done to make self-force calculations more
tractable. Namely, Detweiler and Whiting showed that 1) can be decomposed into two
parts, ¥° and ¥

P =S+~ (3.3.6)

where 9° is referred to as the singular field and ¥® is called the renormalized field. The

singular field has many important properties, including:
e The singular field is only defined in a local region of spacetime about the particle.

e The singular field is a solution to the sourced differential equation for v: V,V®)S =

—4mp.

e The singular field reproduces the singular behavior of 1™ near the particle, so that

YR is continuous and differentiable at the particle.
e According to Quinn’s axioms, the singular field does not contribute to the self-force.

Thus, the Detweiler-Whiting singular field gives us exactly what we need: to find the

self-force, we can simply take a derivative of R = 1)t — ¢)S:

FR = g VYR (3.3.7)

z=x0 "

We omit any expression for the Detweiler-Whiting singular field here simply because
it takes a very simple form once we use mode-sum renormalization. The mode-sum
renormalization method was first introduced by Barack and Ori [93] for scalar charges
following geodesics through Schwarzschild spacetime; eventually, Linz, Friedman, and
Wiseman [94] showed that it can be used for any kind (scalar, electromagnetic, or grav-

itational) of charge following an arbitrary path on any smooth spacetime. The idea is
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this: when one decomposes the retarded field into spherical harmonics

00 V4
(t,7,0,0) =D > Gt ) Vim0, 0), (3.3.8)

(=0 m=—¢
the individual ¢m-modes {1y, } and their derivatives are finite, even in the limit x — x.
Thus, in this prescription the retarded field is reqularized—that is, it is decomposed into
an infinite set of finite pieces. We can similarly decompose the self-force (allowing it to

be defined off the particle’s world line):

00 L
Fo=3 ) Fonlt;r) Vim(6,9) (3:3.9)

£=0 m=—¢
=> Fp, (3.3.10)
=0

where
¢

= Z Eip oYem-

m=—/{

Because the sum over m is finite, F}* is also finite. Finally, this method shines most
brightly when one considers the ¢-modes of the singular part of the force. It turns out
that one can write

1
lim Ep® = FA° <£ + —) + B9, (3.3.11)

T*)’V‘O 2

where A* and B® are (-independent vectors. That is, the f~-modes of the singular part
of the force have one term proportional to ¢ 4+ 1/2 and another that is independent of
¢. Clearly, these two terms diverge when we do the sum over . Once one subtracts
these two terms from the full force, resulting from the retarded field, we are left with the
renormalized force:

FRe =N "Fp — Fp° (3.3.12)
£=0

In this way, we can renormalize the self-force without directly dealing with any diverging
quantities.

As we will show below, Hikida [8, 9] found a way to calculate the regularization
parameters A® and B®—as well as F®® —analytically, to finite post-Newtonian order.

The mode-sum renormalization will therefore be indispensable to us.
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3.3.2 Description of the system and the resulting scalar perturbation

We now specialize to the specific system considered in this chapter: a scalar point charge
in circular orbit around a Schwarzschild black hole of mass M. We use Schwarzschild
coordinates (t,7,0,¢), and give the particle naughted coordinates zo = (t¢, 70, 6o, Po)-
We choose our angular coordinates so that 6y = 7/2; because the orbit is circular, the
particle’s radial coordinate r( is constant in ty,. The particle’s angular velocity as measured
by a stationary observer at infinity is Q = d¢y/dtg. We note that the coordinates of the

particle’s four-velocity can be written

u® = u'(1,0,0,Q)

ut = 1
1—%—7"3(22'

Finally, we emphasize here that we allow the particle to be accelerated; that is, we allow

with

the particle’s angular velocity to deviate from the Keplerian value Qi obtained from the

geodesic equation:

=

Ok = /- (3.3.13)

=
=]

This is counter to what is normally done in self-force calculations, where the particle’s
motion to zeroth order in ¢ is taken to be a geodesic. We do not specify what is responsible
for the acceleration, but we do assume that its associated stress-energy tensor is small
enough that we can still consider the particle to be moving through a Schwarzschild
spacetime. Our motivation, beyond academic curiosity, is twofold. First, studying an
accelerated particle will allow us to compare our answer to special cases for the self-force
on a scalar charge. For example, Wiseman [95] showed that the self-force on a static
scalar charge outside a Schwarzschild black hole is zero. We can’t compare our result
to his if we require the charge to follow a geodesic. Second, Galley and collaborators
[96-100] have pioneered the use of effective field theory to solve self-force problems. Since
terms proportional to, say, M?Q? are associated with a different Feynman diagram than
terms proportional to Mr3Q* having these terms separated out can be useful points of

comparison even though they are identical when the particle follows a geodesic.
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Now that we've specified the system we are studying, we can make progress solving
for the resulting scalar field v. The particle’s charge density is given by a delta function
spiked at its position:

o(z) = q/ g Ot = 10)0(r —10)(0 — 00)0(¢ — o)
oo —det(g,,)
q 0(r —10)d(6 — 6o)d(¢ — )

ut r2sin 6

Y

and the resulting scalar field is

) = —47r/d4x’G(x,x')p(x')
= —47r% /oo dtoG(x, o). (3.3.14)

To move forward, it is helpful to look at the form of G given by Eq. (3.2.24):

/ dtoG(z, xo) / dto/ dwz Z e (r,m0)e 1) V0, 8) oY gm0, o).
— (=0 m=—1

We note that oY n (0o, 90) = oY tm (00, Qo) = oY tm(6o, 0)e= 0. Therefore, collecting

the terms involving ¢, and performing the integrations,

/ dtoG(x, o) / dto/ dwz Z o (1, 70) e piw—m)to

o £=0 m=—¢

X 0Yom (0, ¢) oY tm(60,0)

- o ¢
:/_ Z Z T‘ 7”0) zwt(s(w mﬂ) OYKm(e Qb) OYZm(e()? )

o0 =0 m=—

¢ - _471-% Zz: Z gfm("', To)e_imgt Onm(ev ¢) 0?€m(90> O) (3315)
=0 m=—
_47T_Z Z 9em(7,70) Yem (6, — Q) oY (60, 0). (3.3.16)
=0 m=—¢
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We report both equations above because, while the first one more explicitly gives the
time-dependence, the second more clearly shows that, when one evaluates ¢ at x = x,
the resulting summand is proportional to |¢Yzm (6o, 0)|*. We note here that the above inte-
grations over ty and w are simple only because of the particle’s circular motion; otherwise,
ro would be a function of t,.

The way to complete the self-force calculation now seems clear: we know how to
calculate g, to finite PN order from Eq. (3.2.3) and MST’s method. If we do that and

sum over m, we can find the high-¢ behavior of

¢
= —4#% Z Gom (1, 70)e” ™M (Y5 (0, ) oY (6o, 0) (3.3.17)

m=—/
and therefore of

FY = PYVoPyl g, (3.3.18)

and recover A and B®. We can then subtract the /-modes of the singular part of the
force and recover the renormalized self-force.

There is one difficulty with the above prescription: the sum over m. In particular, the
factor of |2¢|" in ¢¥ creates difficulty. When expanded in z and e (which are now equal
to mQr and 2Mmw, respectively), this factor gives rise to terms proportional to In |z|.
Terms logarithmic in 2z are challenging to sum over m analytically for generic ¢. We will
therefore need to use a trick discovered by Hikida et al. [8, 9], which we discuss in the

next subsection.

3.3.3 Hikida’s Method

Before we discuss Hikida’s method in detail, I wish to write ¢” for s = 0 in terms of € and
z. As we will see, our PN expansions will coincide with a double Taylor series in € and z,

and ¢ = z — e will be less useful to us. Also, ¢ is significantly simpler in the s = 0 case:

o Ve 1+i€)n,..
v _ =iz e)2 V<1_5> u(y+ ap) i n
ot = el (1= 2 3wl e o)

X 1Fi(n+v+14ie2n+2v+2,2i(z —€)). (3.3.19)
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Here, we have factored out [2z]” from |2¢|”. We don’t need an absolute value sign on
(1 —€/z) = (1 —2M/r) because it is always positive. Hikida et al. noticed that if we
define ®” and &' by

¢ = [22]" D, (3.3.20)

¢C_V_1 _ |2Z|_V_1(P_V_17 (3321)

then ®” and ® ! can be expanded as polynomials in € and z. That is, there are no
logarithmic terms in ®” and ®~“~!. The terms that are logarithmic in w—which are the
terms that make the sum over m in Eq. (3.3.17) difficult—are due solely to the factor of

12z]”. To see this more explicitly, we write v = €+ > 7 | v5,€". Then

|22|V — |22|Z|2z|zf:1 Vo €2

= 22| exp <ln |2z| Z V2n62”>

n=1

= |22][1 + voe? In 22| + O(eY)].

Next, Hikida et al. write gg, in terms of ¢” and ¢_*~!:

1

L — Buys )W (9%, o777 1) [
1

= (1 — U)W (02, =—1) [¢Z(7’<)¢c_ _1(7">) +/BCV,YZ¢Z(T>)¢C_V_1(T<)

Guo(r,r") = ( OL(re) + Bl ()] [l (rs) + o7 (rs)]

+Ye Ge(re)de(rs) + 5cy¢c_y_1(7"<)¢c_y_l(r>)]
1

— _ QUAV\ AV —v—1
N (]_ — ﬁc'/"yg)wew( Z’qsc—u—l) {(1 ﬁcf)/c)d)c(r<)¢c (Ir>)

F AL ()Pl (rs) + Bro )oY (rs)
B DL (r)d  Hrs) + @l (rs)e. " (re)] }

Let us notice a few things about the terms on the right side of the last equation. First,
the first term is the only one whose derivative is discontinuous at the particle. The rest
of gy, is symmetric in r~ and r~ and therefore in 7 and /. The first term is also free of

terms logarithmic in w; the factors of |2z]” cancel out. Hikida et al., noticing this, then

split g, into two parts:

ol L) fyl_i.lsl

9es(r,7') = g, (r, 1) + gl (1), (3.3.22)
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with

S N OL(ra )" (rs)
g&u(r7r) - WZw( Z’gbcfufl) ’

1
e e R LA UL OB o G

(3.3.23)

i (r, 1) = (
+BAL (oL (r) o M) + @l (re YN ] . (3.3.24)

Let’s study ggj more closely. We note from the expressions for 87 and +% that 7 =
O(e21) and 7% = O(e™!). Furthermore, for £ # 0, ® and @~ are O(1), so ¢% = O(z*)
and ¢;7~! = O(z7%71). Finally, in order to convert expansions in z and € into a Post-
Newtonian expansion, we see that z = PN(.5) and ¢ = PN(1.5), where PN(z) indicates
that a term is at 2" Post-Newtonian order. Taking all these results together and looking
at the terms in ggﬂ it becomes clear that for £ # 0 the lowest-order term in gEJ is the first
one in Eq. (3.3.24), and gf}u = PN(¢ — 1.5). Thus, the PN order of gffu increases with £,
and to do a finite-PN order calculation, we only need to calculate gEJ for a finite number
of f-values. Making the replacement w — m{) and summing over m is therefore not a
problem because the sum can be done explicitly.

While we still need to calculate g?w(r, ') for all ¢-values, it turns out that we can: we
saw general-¢ expressions for the coefficients {a”} in Eq. (3.2.16), and we saw a general-¢
expression for v, in Eq. (3.2.15). It follows that there are general-¢ expressions for ¢7 and
77~ We also saw that the general-¢ expressions do not work for all /-values; specifically,
we saw that in order to calculate the coefficients and v to second order in €, we couldn’t
use the general-¢ expressions for ¢ = 0, 1. It turns out that the general-¢ expressions for
#” and ¢! are only valid to (£ — 1) PN order. Thus, to calculate g?w(r, ') accurately
to n'" PN order, we can use the general-¢ expressions when ¢ > n + 1, but we need to
calculate g?w (r, ") explicitly for lower ¢-values. Furthermore, since gggw(r, ') is polynomial
in w, gegm(r, ') is polynomial in m, and it is possible to do the sum over m indicated in
Eq. (3.3.17) for general ¢ analytically using

- T\ 20+1 d
Z m*" oY (— 0) = (=1)"—— — Py(cos ¢) . (3.3.25)

! 2 47 d¢ =0
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Therefore, for f-values that are high enough relative to the PN order we calculate to,
we can use the general-¢ expressions to find g?m(r, r’) and then do the sum over m using
Eq. (3.3.25). For the lower (-values, we must calculate each g5 (r,7') explicitly.

It is now clear that, at least to finite PN order, the field 1/)S calculated from g?w(r, ')
contains the singular field °, while ggfz produces a regular field wﬁ. Thus, we only need
to renormalize the S part of the force F 5 resulting from ws. We can do so using the
general-¢ expression for 1/15, computing the sum over m using Eq. (3.3.25), and recovering
the regularization parameters analytically from the high-¢ behavior of the result.

Finally, Hikida et al. employ one more trick: they notice that gS can be split into to

parts: one that is symmetric in » and 7" and one that is antisymmetric. Specifically,
g5, = go P (r") + go 7 (") Sign(r — 1), (3.3.26)
and

S 1
90 17) = gy [T E ST ON] . (B3.20)

When we introduced mode-sum regularization, we saw that the “A-term” A%(¢ + 1/2)
switches sign if one approaches the particle from the opposite radial direction, whereas
the “B-term” B® is unchanged regardless of the the direction from which one approaches
the particle. Clearly, then, the antisymmetric part of the Green’s function is responsible
only for the A-term, and we are free to discard it. This is equivalent to averaging the
field outside the particle’s orbit with the field inside the orbit, and is standard practice
in self-force calculations. This allows us to only have to subtract the B-term when we
renormalize.

Our method is therefore as follows:

1. Choose a PN order.

2. Generate the general-¢ expression for g (r,1') to said PN Order.
3. Find the general-¢ expression for ¢§(+) using Eq. (3.3.25)

4. Compute the resulting general-¢ expression for F, KSH)’Q.

%)
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5. Get the regularization parameter

6. For low /-values, compute FE(J’)’O‘
7. Perform the sum
> ~
FSSe =3 [ FSe Ba] '
=0

8. Compute FZR’O‘ explicitly for all /-values needed to be accurate to the given PN

order.

9. Perform the sum

- Zmax

FR,a _ Z Fﬁf{,a,
=0
where £, 1s the maximum ¢-value needed for that PN order.

10. Add the (S — S) and R parts of the force:

FR,a _ FS—S,a —|—Fﬁ’a.

3.4 Results

We choose to find the self-force to 6'" PN order. This means we must explicitly calculate
®” and @' for £ € [0, 7], and we may use general-¢ expressions for ¢ > 8. We also note
here that for £ = 0, @~ = PN(—1), so we need to calculate ® to 7" PN order, whereas
for all other /-values we find both ®” and ®~*~! to 6 order.® We will report intermediate

results, including general- and specific-¢ expressions for ®, ®=*~! and F S’(Zr), as well as

9The reason for this is that the specific-¢ expressions for ®~¥~1 have terms proportional to M 1.
These terms enter ® 1 at PN(¢ — 1), and are one of the ways that the specific-¢ expressions deviate
from the general-£ ones. For £ = 0, then, there is a PN(—1) term proportional to r/M. After we add the
S — S part of the force—which has M~ terms due to the presence of ®*~!'—to the R part—which has
these terms both due to ®¥~1 and %, whose leading order term is inversely proportional to M—the

terms inversely proportional to M cancel in an apparently miraculous way. However, Hikida et al. [§]

show that these terms cannot contribute to the force for physical reasons.

ol L) fyl_i.lsl
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F Of}g, which only has specific-¢ expressions. We show these to help the reader understand
how the renormalized force is ultimately calculated, but because typesetting the general-¢
expressions becomes intractable at high PN order, we only give them to 2°¢ PN order. We
give quantities that are calculated from the intermediate results to 6 PN order; these
include the regularization parameter B,, the renormalized S part of the force F S’S, the
R part of the force, and the total renormalized force F R
Before we get to more complicated results, we mention that, in the scalar case, ¢ and
@771 are real, and because of Eq. (3.2.18), even in w. After the replacement w — mS,
they are even in m. Therefore, gfm is also even in m. When we take a time derivative
of wg, this introduces a factor of —im) to its corresponding summand in Eq. (3.3.15),
causing the summand to be odd in m. The sum over m is therefore zero, with the end
result that
) =0 (3.4.1)

for all values of ¢, and therefore

FS=0. (3.4.2)

Since the motion is circular, F (S o FP, and

Fj =0. (3.4.3)

The t- (or ¢-) component of the force modifies the energy of the particle, and this energy
is carried away by the resulting scalar radiation. Since the ¢-component of the S part of
the force is zero, it must be that the R part of the field carries the radiative information.
This is an unexpected benefit of the otherwise unphysical R-S decomposition.

We also note that, since the quantity dp oYz (6,0)|e=g, 0Yem(60,0) = 0,
FS =FR=FR=0. (3.4.4)

3.4.1 Intermediate Results

All expressions in this section will be accurate through 2" PN order. The general-/

expressions will therefore be true for all £ > 3. We start with the general-¢ expressions
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for ®” and ®~*~1. We manually insert factors of ¢ so that the reader can easily distinguish
between different PN orders.

, M, (rw)? 1 1 M2 —1)?
=l [—76 - Tm] 2 [?—% 3
M (rw)* € =510 N (rw)t

ro 2 ((+1)(20+3) 8

1 1
(20+3)(20 + 5)] o TPNE)  (345)

c2?

L M (rw)? 1 1 M?(0+1)(¢+2)*
v—1 __ o P
¢ _1+[r(£+1)+ > 26—1} [ﬂ 20+ 3
_}_M (rw)?> 2 +70—4  (rw)

1 1
ro2 @1 8 (26—1)(2£—3)]_4+ PN@)  (346)

Cc

Now for the specific-¢ expressions for the same quantities.

For ¢ = 0, we report ®”
through PN(3) because that is required to find the force through PN(2). For ¢ = 0:

7 [ 14M 7 1 14M? 28 M 7 1
o =L 2| L 2, 4| L
9" { 27 7 (rw) ] 2 { 77 "o ) F g ) ] o
{ 56 M* 7601 M? 203 M
+ +

315 T asss 2 VW) g0 ()

- (m)ﬁ] 016 +PN()  (34.7)

1r 1 r M 1 1 r 1
pv-lo_2" 2 |1 2" 2 Mo L 2 4
3¢ T [ s ] N { - T gt
{4M2 2243 M 23

1 r 1
o (rw)? = o (rw) ! + o (rw) | 5 + PN(3)  (3.4.8
377 1m0+ )~ 700" Tm20 0 ) } a TPNE) (348)

For ¢ = 1:
M1 1 1
=1+ |- 2w = 4 | — L )+ ——rw)i| £ 4PN 4.
+ [ " 10( w) } > + [ 10 (rw)” + 280(7‘w) } - + PN(3) (3.4.9)
29 1 r 1
—u—1 v 2 e =7 2 - 4| —
¢ _[ o) } * {2 TRl gy ) } c
18M2 M, o, 9 1 1,
; {gT_Z 27 )’ + 1o (rw)’ — o ()| 4 PNG) (3410
For ¢ =2
M1 1 [2M? 8 M 1 1
O =1+ |-2— — —(rw)’| 5+ |z—5 — 57— (W)’ + —(rw)*| 7 +PN
* { r Vi) } e [3 T oy W) g () ] A+ ENG)
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M1 70 1
q)—u—l =1 - - 2_ 41 —
- [3 F e~ ggrar ) } 2
8MTM, o, 191, 1o, (1
BM M 2 - ~ 4PN 412
{7 2 T ) T o) Ty @ TENG) - (3412)
For ¢ = 3:
M1 1 [12M? 2M 1 1
O =1+ |—3— — —(rw)?| S5+ | == — == (w)*+ ——(w)*| S + PN
—i—[ 3T 18(rw)}c2+[5 = 97~(7w) —1—792(7’@0)]044- (3)
(3.4.13)
M1 1
O =14 [4—+ —(w)*|
* [ r * 1O(rw) ] c?
wom* 13M, o 1 o1 ]
100M”7 13M — (et = — = ~ 4PN 414
+[ o 2 15y ) ) g )| TING) (3414

The functions ®” and ®»~! are used to construct the radial Green’s function and its

R and S parts. These give rise to the respective parts of the scalar field ¢, and then to

the force. The general-¢ expression for FrS éﬂ is

5 2 1 1M 3(—1+20+20% 1
) _T )t _4aE 2| =
re T2 2 TiCi 2B ) | @
=9+ 1604160 EJF —9 + 104 + 1042 %(r w)
A(—1+20)(3420) 12 " A(—1+20(3+20) ry "
3 (15 — 160 4 202 + 3603 + 18(%) g1
— 4PN 4.1
163+ 201+ 203120 + 20 ") ] ot (3)} (34.15)

To get FTS +) through 2"¢ PN order, we need to calculate the /-modes explicitly up through
¢ = 3. These explicit /-modes are as follows.

; 2T 11 (M 11 1 (15M% 3 11 1
O R Y P 02 o M2y + ——Qd ) =
W0 T | T T\ Tay T ) @ T\ g T ) @

+PN(3)] (3.4.16)

5 2 1 5023 M 371 9045\ 1
FS(+) ZQ_ L 0 200022 o) *
o2 2 1o ) T\ T2 T30 0 3Rar ) @

23M?2 159 157044 1779577\ 1
— ——MQ? 0 _ 0) = +PN(3 3.4.17
* ( 2072 * 350 "t o008 5320M) A (3) ( )
5 21 1 M 11 56045\ 1
e 4|2 022 0\
n2 22 T\ T T o ) @
29M2 17 4205044 7605rT\ 1
— — MQ? 0 0) — +PN(3 3.4.18
+( o2 T T g T o > atPNE)| (3418)
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- 27 1 M 23 1
Jo S A B _M P02 L
3 Tt ) 2

( 61M?% 37 161
+

+ —MQrg+ ——Q'ry —

B 13680077 1
60rg 60 528

VT —+PN(3)] (3.4.19)

ct

We will now report the expressions for the -modes of the R part of the force, accurate

through 2" PN Order. We will first show these for the radial component.

5 2 9 3M 9 1 3 M? 3M 9
8 [0 (30 D) L (B I 80

o |l 7 Trg 14 c? 14 r2 27 56
+PN(3)] (3.4.20)
2
R ¢ |Dro 9 10 9 9 79 4
L1 =0 _— 20t ) =
rl =2 {191\4(0 ) +( 100" = 3537 0 )
5 M 7 177 r 1
2 o) — S () + 0 (0)8 ) = 4 PN 4.21
" (38 o "0 = g o)+ g 3 o) ) At (3)] (3.421)
- @567 1 924 76 1 1
FR =LA (200001 =+ (22000t — 2% 000)f ) = + PN 4.22
- /1368 r 1
FR =T (222270 . 0)) = 4 PN 4.2
T‘,S ,r,g |:< 845 M<r0 ) > C4 + <3>:| (3 3)

As mentioned in the last section, each f-mode of the R part of the force enters at a higher
PN order than the previous /-mode.

Finally, we show the f-modes of the temporal component of the R part of the force.
Again, since the S part doesn’t contribute to the temporal component, these are all one

needs to compute the damping force Ft.

Ffy=0 (3.4.24)
2
R [[1 3\ 1 M s 7 5\ 1
Fiy = e Kg(roﬁ) ) =+ (—70<r09) - %(ToQ) 5+ PN(3) (3.4.25)
2
R 4 oS 16 5\ 1
FY = o {(1—5(7«09) ) 5+ PN(3.5) (3.4.26)

To reiterate from the last section, in order to calculate the full renormalized force FY,

we first need to take the high-¢ limit of F i(;). This gives us the regularization parameter
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B,. We then subtract B, from F i(;) for all /-values, and sum from ¢ = 0 to co. Because
we have general-¢ expressions for FS}ZF) that are valid for £ > PN + 1, we can do this sum
analytically. After that, we add the f-modes of the R part of the force, which does not
need to be renormalized. Only a finite number of the R -modes contributes to finite PN

order, so no infinite sum is needed for that part.

3.4.2 B, and F5S

We now report the regularization parameter B,, obtained by taking the high-¢ limit of

the general-¢ expression for FTS §+). To 6" PN order, it is

@1 M 3,5\ /1) M?> 5 27 1\*
B, =% |—= ) - — T+ SMQ Q! =
v 2+( 2 8 0 \e) T T TR T g o) (5
C2MP 95 79 1\°
ity 7o ¥ % SR o (ON :
(e =T e+ o) ()
4 30)2 8.8 8
N 4]\{ 3M Q123000 2 429 Q1+ 40950578 (1
ré o 64 D 32768 c
8M5 2M4Q2 69 30183 M Q87
—M3Q4 3M296 4 0
N < TR 32768
+13995910 roy 71\ "
131072 c
35MIQT  16M°  2M5Q? | 565 69015 M 20876
222 305, 3 4222 o
+< R 16384
130533M Q109 1976590212\ /1"
- PN(7
T 30T o 2097152 ) (c> +PN()

where we have manually re-added factors of 1/c so that one can easily demarcate terms

of different PN orders. We write the resulting renormalized S force as
~ 6 ~
=15 08s (3.4.27)

where n refers to the PN order of the term, and

5 2 502
S-S __ 0
O = —= - 20 (3.4.28)
<o AM 891202 1417130
S = = 4 =0 (3.4.20)

Tro 133 3002M
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9M?* 5 136153rgQ*  9804331rI02°

5,8 = — = MrgQ? - 3.4.30
2 = g T g TR 142054640 (3.4.:30)
(s 482Mg3 CBOAOMPQP T, a0 SOGTO99IOMYEQ! 1243509067600
: 13313 5054 ' 64 07534980 127849176
10150833230579028 3.431)
1108452355920 i
i _ AO10M' 13GSTMQP  TMCrQP | 1634173681000 S3M moriq!
rd -

532ri  20216rg | Gdro 195069960 1024
| 710043482530363M 1300 | 94836548674327r50°

12153768834480 i 4433809423680
B 34295726484583441171Q1°

299752119897310080M

(3.4.32)

5.5 235544TM°  57835M'Q%  11M'7?Q0% 4498242521 M3yt
5T 105070/ 20216/2 | 256r2 2730079440
MIMPRR Q! | 5T79923174043661 M40 1529M {0
1024 36461306503440 2048
44807891407047808136653M 7 Qf  19645812110644890187r20010

205683170492936256120 * 499586866495516800
B 189346213123387017025r330Q12

137834589075065955072 M

(3.4.33)

22121093 M° _ 5515976489 M°0? _ 23M57%Q)? B 5027838304339 M0
420280r8 273097944073 25673 546560018592
5221 M w204 _ 76585 MAmiQ)! _ 17575679246803750626521 M 3r3Q2°

2048 524288 82923949380773592000
_ 857101 M3m?r30¢  2175028272323202689892893 M 2r§ Q8

276480 * 1974558436732188058752
423951 M2 m?r508 B 67449102739100897175124383220723 M Q0

131072 112731391541992244040866246400
16796339394328549334797373rQ12

260507373351874655086080
_ 38100898637282739376513402669r 5O

23755667375957449797299635200M

S-s _
Cr,ﬁ -

(3.4.34)

3.4.3 FR

Unlike the S part of the force, the R part doesn’t need to be regularized and is fully

responsible for the temporal component of the force. It is still true that

F =0, (3.4.35)
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but Ftﬁ, Frf{, and F f are all nonzero. We start with the radial component, and again we

write
5 12

R_ 4 R
Fl=5> Clo (3.4.36)
0 o
where p denotes the PN order divided by two. The coefficients are
2 50%3

cRk — = 3.4.37
U + 19M ( )
~ AM 89 1417472

cR — 2 e BT 3.4.38
P T T 133 0 T 300207 ( )
~ IM2 5 136153044 9804331Q5/7
R = 4 MO, — 0 0 3.4.39
2 = T T g M0 T TR T 142054640 (34.39)
~3049M202  482M3 93892831 MO43 4 4
R, = — : O ZAMOQYE — —MQ* In |2Qr| r3
3 5054 1333 10837220 31 M g — S M I [20r0] 7y
| 124350006705 | 1015083230570} (3.4.40)
127849176 1108452355920 M -
i AO10M' 54110007 49MS086TMQME 8 o
= - - - T
rd 53218 202167, 65023320 37 0
8 2520940799065817 M Q6rs 22
—M?Q*In |2Qr| r2 O 22N MOQSD
*3 n |20l 1o + 0 1306503440 3 1o
6 128 9483654867432708, 3
—MQSIn 12Qr| 12 — —MQ8 In |4Qr,| r> — 0
*E n [20ro} g — 77 n |48ro| 7 1433809423680
3429572648458344110107 11 3.441)
299752119897310080M] -
i 38
Clys = —EM%\QPTS (3.4.42)
i 2355447M°  138699M402 140795391 M30%r, 2
OR — o _“ M3Q4
5 1050703 2021612 303442160 37 1o
2 7036622871528893 M 202614

- §M3§24 In |2Qrg| ro — + 367 M*Q5r

36461306503440
28 1 12096 4 2120506 4
+EM Q ln|2§2r0|r0+EM Q% In [4Qrg| ry

53728501103815655428867 M Q817 119 6
"o _ —7MQ87“5 — £MQ8 In |27 | Tg

205683170492936256120 6
1216 2187
-+ WMQS ln ’497"0’ Tg — WMQE; ln |6Q7“0‘ Tg

196458121106448001870"r” | 18934621312338701702502"%?
499586866495516300 137834589075065955072 M

(3.4.43)
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1783
315

C'35.5 = EM:S |Q|5 5 —

———M?*7|Q|Tr? 4.44
i 2778 (3:4.44)

11348688119305M1Q*  22121093M° 26210731801 M°Q?
1639680055776 B 42028075 - 273097944073
16M°Q?  |2M 18610404287177043507497M>Q0r3 49207
3r3 To 82923949380773592000 675

152 38 19447
+ Eh + In |29 [P M3Q57] — 2—7M37T2QG7“3 s
1984 8
v —— M3*QCIn [4Qro| 73 + 3M3Q%<2 (2)rs
14021972419142980434311137M2QS7“0 5131

M2QS 6
0872792183660940293760 Tt "o

1786 1408 6561
———M?*Q%1In|2Q —— M?*Q%1n |40
945 n 280l 75 + 4ol ry +

79576586453183332553003144212243M Q10§ 161 10
112731391541992244040866246400 1! 0

65M Q00 |20 70 14512M Q0 In [4Qr| 7 8019
n 20|y n|dSdro| g | 80 MO 1n 69| 78
1134 2835 140

262144 MO0 In [8Qrg| vy 167963393943285493347973 73012 }2

2835 260507373351874655086080
381008986372827393765134026690 47}

23755667375957449797299635200M

R _
Cr,6 -

7M3QG7’8’

n

——— M?*Q5In |2Qr¢| 7§

——— M?*Q%In |6Qr0| 7§

(3.4.45)

where ~ is the Euler-Mascheroni constant and 1/(?) is the second derivative of the digamma
function. As expected, there are logarithmic terms in the R part of the force, and there
are also terms at half-integer PN order.

We now report Ftﬁ. Because the S part of the force doesn’t contribute to the time

component, the R part is the full renormalized force. We write

FR = rOQ Z B (3.4.46)
with
R 1 3,.3

Cls = 52r; (3.4.47)

R 3 ) 5 5
CR = — MO + S8 (3.4.48)

R 2 3 3
Cy = §M7rQ Abs[Q]rg (3.4.49)
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5 11 35

CR = 6M2Q3r0 — 7MQ%;)* + ﬁmg (3.4.50)
19
C = —2M>*7QPAbs[Q]rg + EMWQE’Abs[Q]rf; (3.4.51)
1 AMAQY  4653TM2Q5rd 76 4
CR — __M3Q3 o_ 'V MQQ5 3 _M2 2Q5 3
5= 7% T T T 20 g5 /M T T g MR
76 19201MQ7r8 35
— — M2 In |2Qro| rd — ———— 0 4 Q9% 3.4.52
45 n [20ro| g 1080 160 (3452)
5 65 4639
CR = M3 |Qrg — — M*7mQ|Q|rg + —— M7Q7|Q|r] (3.4.53)
3 3 420
AMBQ BMAQ3 20417 76 4
CR — . M3QB 2 i M3Q5 2 _M3 QQE) 2
T S
76 335959619M2Q7r2 183627 M2Q7r5
_MSQ5 1 QQ 2 0 0
T n [260mo| 1o + 00 1575
N 24—2M27T2§27r5 B 20224 M3Q7 In |2Qrg| rd N 266 M2Q7 In [4Qrg| 75
45 0 1575 225
3215311 MQ%r8 385
— —Qltplt 3.4.54
75600 128 0 (34.54)
1 T197TTM3Q5|Qrd 152
CR = _Z M*7 03 |0 0 _ ZZEAMERQO | r?
o = —3M IR+ 1350 15 Mg
152 11675 546307 M Q0 |Q|rd
— M3 QP|Q| In |2Qr0| 18 — ——— M7 Q7 |QrS 0. (3.4.55
25 MY In (260 o — 5= MPm Qg + 22680 (3.4.55)
The ¢-component of the force F qf‘ is proportional to the t-component:
FRo = Rt (3.4.56)

Here we note that the 1.5-PN term is proportional to the particle’s jerk and was first
predicted by Gal'tsov [101]. Furthermore, in the limit Q — 0, F* — 0; as one should
expect, a static particle does not feel a force in the temporal direction and does not radiate.
However, R} remains non-zero when the mass of the black hole goes to zero, which is
also unsurprising: a particle undergoing circular motion in flat spacetime radiates. These
are limits we could not check if we forced the scalar charge to follow a geodesic.

To allow for easy comparison to other Post-Newtonian work, we also report the force

when the particle does follow a geodesic. To do this, we will use the usual gauge-invariant
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Post-Newtonian expansion parameter z = (MQg)?/? = (roQx)?, where Qi = /M /7 is

the Keplerian angular velocity. The result is

Ftl,%geo :q_2x1/2 Bx3/2 _ %x5/2 i 2?”%3 . £x7/2 4 Q%le
<% + ? - Z—§7 - % ln(4x)) /% — 3122)7%5
(- 3‘;’1?)233” - 1‘:"?7 - 755” 1n(4a:)> 25+ (9(9013/2)] . (3.4.57)

This agrees with Hikida et al. [9], who report the above through 4" PN order.

3.4.4 FFR

Here, we finally report the radial component of the renormalized force. Similarly to

before, we write

5 12
S— R q
FR= 5S4 R = 2 > CR . (3.4.58)
p=6
Then the coefficients are given by
c® = Lara20? — 2ot — 2ons — 2ot 12| 75 (3.4.59)
r3 64 9 0 37 0 3 (A 4.
2M3Q?  TMB3rQ? 7 8 83M27m2Q4r2
071,:{4 = -+ 6471- + §M2Q4Tg + g’}/MQQAlT(Q) — —107;4 "o
' To To
8 479 22 6
+ §M2Q4 In [2Qro| 7§ + EMQ%“S - EfyMQ(iTg’ + gMQ6 In |27 75
128
— 1—5M§26 In |47 75 (3.4.60)
R 38 o 5,3
AMAQ?  11M*7%Q% 19 2 141 M3 72004,
OR — — MR — MO, — LA e o
N 9 o g AT 1024
2 1 1529 M 272 Q074
— M I 20| o — 51—57M296r§ T 367002000 + 10 2018 T
28 512 54647TMQ8r! 119
+ EM2QG ln |2Q7"0| 7“3 + EMQQ6 1Il |4Q’f‘0| ’I“é + Tﬁoo — T’)/Mﬂg’l”g
6 1216 2187

— gMﬁg In |29 | 7§ + WMQ8 In [4Qrg| 7§ — 7—OMQ8 In |6Qrg| s (3.4.62)

SR fyl_i.lsl

66

www.manaraa.com




76 1783
C'55.5 = 4_5M37T|Q|5T(2) - EMQW’QVTS (3.4.63)

o A g, B2AMITOT TESEMIT0! | BIMOOR  23MPrP0
AT 2048 5242883 4573 25613

16M502  [2M| 6239 49207
37 0| o0 M gy M
0 0

152 138469 0M372063 19447
- In [2Qr|12M3Q%3 — 04— M3Q01n |2Qr,| r3
+ 5 [y 28] "o 30720 s n |26ro| 7y
1984 8 80321902086
— — MR In 40| 1§ 4+ SMPQOY 2)r - ——— "

45
423951 M272Q8rE 1786

5131
MRS — M2Q8 In |20, 78
T To 131072 945 n |26ro| g
1408 6561 7319647 M Q1072
——M?Q¥1In |4Qro| 78 + —— M2Q% In |6Qro| 8 0
30 n |48ro| o + - n [6ro| g + 63040
B @’}/MQIOTQ n 65M Q0 In |2Qro| rf B 14512M Q0 In |4Qro| )
0 1134 2835
262144 M QY In |8Qrg | rf

4
2835

8019
+ WMQIO In |6Q2rg| 7 —

(3.4.64)

Because we allowed the scalar charge to be accelerated, we can easily see that the radial
component of the self force both for a static particle outside a black hole (corresponding
to Q@ — 0) and for a particle undergoing circular motion in flat spacetime (corresponding

to M — 0).

For non-accelerated motion, the radial component of the force reduces to

Flleo :7‘{_; { [—g + 76—7;2 - %v - gln(ékv)] z® + {% + 337; -~ %v + % In(2z)
_% ln(4:c)} zt + i—imggﬂ + {1154101 + 1;§ig2 + %7 — % In(2x)
2 ina) - 2T 1n(6x>] o By {— e Qi’gﬁgggf
_527462588857r4 i % <7 - % ln(4x)>2 * 633397 N 336778801 In(2z) - % In{4z)
3‘3@3 In(62) + 21/}(2)(2)} e O(a:13/2)} | (3.4.65)

This is again in agreement with Hikida et al. [9], who report the above expression through

4 PN order.
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3.4.5 Comparisons to Other Work

Our results are consistent with those of Hikida et al. [9], who calculate the self-force
for geodesic motion to 4™ PN order. Accelerated scalar charges are rarely studied due
to their doubly non-physical nature, but Heffernan et al. [10] recently studied them
numerically. Niels Warburton, one of the coauthors of that work, graciously shared some
of the numerical data with us. In Fig. 12 and Fig. 13, one can see how our results
compare. In both figures, a dimensionless quantity proportional to the radial component
of the force is plotted against the ratio between the particle’s angular velocity and it’s
Keplerian angular velocity 2x for constant radial coordinate ry. In Fig. 12, ro = 50M,
whereas for Fig. 13, rp = 6M. The numerical data is plotted in blue dots, where as
our analytical results are plotted in curves of successively higher accuracy. In Fig. 12,
one can see how curves accurate to higher PN orders stick with the numerical results to
higher angular velocities. However, even our results accurate to 6 PN order no longer
accurately describe the force when Q 2 3Qk.

In Fig. 13, the particle is at its innermost stable circular orbit, ro = 6M. Remarkably,
our 6 PN-accurate expression still correctly gives the force for geodesic motion, although

it becomes inaccurate for faster-moving particles.

3.5 Conclusion

In this chapter, we have successfully calculated the self-force on an accelerated scalar
charge in circular orbit around a Schwarzschild black hole to 6 PN order. We used a
method developed by Hikida et al. [8, 9], which allowed us to compute only a handful of
the field’s /-modes, along with general-¢ expressions that are valid for high /-values. Our
results are compatible with previous PN calculations, as well as numerical results found
in [10].

We do not expect scalar charges to be astrophysically relevant; instead we have used
the scalar field as a toy model for the gravitational field, with the intention of eventually

applying Hikida’s method to finding the gravitational self-force. We do just that in the
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— 4PN — 6PN

-6.x1078

-8.x1078

O/

Figure 12 : The radial component of the self-force on an acceler-
ated scalar charge at rop = 50M as a function of angular velocity.
The blue dots are numerical results obtained from Warburton and
reported in [10]. The curves are our analytical results, accurate
to 3", 4*h 5th and 6*" PN order. As the particle’s angular ve-
locity increases, it becomes more relativistic, and PN expansions
become less useful. Here, when the particle’s angular velocity ex-
ceeds thrice the Keplerian velocity, even our results accurate to
6'" PN order become inaccurate.

0.003

0.002}

0.001}

0.000;e——e——= ® o

~0.001! — 3PN — 6PN \"..
0.0 05 1.0 15

Q/Qy

Figure 13 : The radial component of the self-force on an acceler-
ated scalar charge at 7o = 6M as a function of angular velocity.
Once again, the dots are numerical results given by Warburton
and reported in [10]. For clarity, we only show our results accu-
rate to 3'¢ and 6" PN order. Remarkably, our analytical results
at 6 PN order still accurately compute the self-force for geodesic
motion at rg = 6M, otherwise known as the innermost stable cir-
cular orbit.
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next chapter.
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Chapter 4

Gravitational Self-Force

4.1 Introduction

This chapter will discuss work I did under the supervision of Alan Wiseman. It is a
continuation of the last chapter, and discusses how the methods of the last chapter can
be extended to the gravitational case.

To be more specific, in this chapter we consider the gravitational self-force on a massive
point particle in circular orbit around a Schwarzschild black hole. As with the last chapter,
we describe the particle’s position with a radial coordinate ry and angular coordinates
0y = 7/2 and ¢y; the angular velocity as measured by a stationary observer at infinity is
Q). This system is much more astrophysically motivated than that of the last chapter; it
models an extreme mass ratio inspiral (EMRI), where a supermassive black hole is orbited
by a stellar-mass black hole. EMRIs are expected to produce gravitational waves that
are too low in frequency to be detected by terrestrial detectors like LIGO; instead, we
will need space-based gravitational-wave observatories to study EMRIs observationally.

This chapter begins by discussing the spin-weighted spherical harmonics, because their
identities and relationships to ordinary spherical harmonics will be needed for the calcu-
lations in the rest of the chapter. We then discuss the tetrad formalism of Newman and
Penrose [102] and the resulting description of gravitational perturbations to Schwarzschild

spacetimes. Next, we explain how gravitational self-force differs from scalar self-force and

71

www.manaraa.com



introduce Detweiler’s [11] gauge-invariant redshift factor. Finally, we show how to apply
the method discovered by Hikida et al. [8, 9] to find the redshift factor, and report the
results we thereby obtain. To our knowledge, this is the first time Hikida’s method has

been successfully applied to the gravitational case.

4.2 Properties of the Spin-Weighted Spherical Harmonics

This chapter will make extensive use of the spin-weighted spherical harmonics Y, (0, ¢),
and we consider their properties here. We stated the differential equation they satisfy in
Eq. (3.2.3). Along with the harmonics we have the spin-weight raising operator 9 and

s).l

the spin-weight lowering operator 0 These operators are given by

A

0 = —0y — i csc 0Dy + s cot b, (4.2.1)

0 = —0y +icsch, — scot b, (4.2.2)

and when they act on a spin-weighted spherical harmonic, they have the properties

0 Yo (0,0) = /(€ — s) (L + s+ 1) o11Yun(0,9),
6(5)51/5771(97 ¢) = —\/(f + 3)@ — s+ 1) 5_1ng(9, ¢)

Like the usual spherical harmonics, the spin-weighted spherical harmonics of a particular

spin-weight form a complete orthonormal basis on S?:

/ 4D Vi (8, 6),T (6, 6) = Sy (4.2.3)

D Y0, 0)Yem(0, ¢) = 5(cos — cos0)5(¢ — &) (4.2.4)

l{=|s| m=—£L

We choose the spin-weighted spherical harmonics to satisfy the phase conventions

s}/ém(ea qb) = (_1)8+m—57é,—m(97 ¢)7 (4'2'5)

s}/(m(ea ¢) = (_1)é—snm(7r - 97 ¢ + W); (426)

!Note that this is counter to the usual and simpler notation, with @ as the spin-weight raising operator
and O as the spin-weight lowering operator. The notation here will be useful because it will allow us to
have operators corresponding to different spin weights in the same equation without confusion. Also,

this notation allows us to continue using an overline to exclusively denote complex conjugation.
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they then can be explicitly written [103]

m (201 +m)(l—m)! ., (0
s}/fm(aqs) :(_1) \/ A ((£+8;'E£—8)') Sln£<§>

x Z ( S) (T f:_‘s m> (—1)E7=2 cotZr+s—m <g> eme. (4.2.7)

Our two phase conventions, along with the explicit ¢-dependence shown above, have

implications when we evaluate Yy, at the angular position (g, 0) of the particle:
Y (00,0) = (1) _ Yy (60, 0) (4.2.8)
Yo (00,0) = (—1)",Y (65, 0). (4.2.9)
Since the factor of € is the only complex term in the explicit expression for .Y, (0, ¢),
Yom(0,0) = .Y 4,(6,0). (4.2.10)

Finally, when evaluated at (g, 0) the spin-weighted spherical harmonics can be written

simply in terms of £ and m. First, we define 0,,:

1, neven
0, =
0, nodd

Then the expressions for the spin-weighted harmonics with |s| < 2 are [104]

20+ 1 /(L +m)l(£ —m)!
-0+m
o¥erm(00,0) =1 \/ 4 £+m)n(g myll e

/2£+1 £+m m)! m
:I:lmm 907 \/ |:(€+m)”(£_m)”m5+m

(0 +m— 1)"(5 m— 1)!!"’”””‘1}
Yo (0 20+ 1 (0 +m)!(£ —m)! 2m? — 0(0 + 1) 0
<2Yim (60, 0 \/ (C+2)(C+ 1)l —1) | (€+m)C—m) ™

o 0
(€+m—1)u(g_m_1)” opm—1| -

4.3 Gravitational Perturbations to Schwarzschild Spacetimes

In this chapter, we make use of the tetrad formalism developed by Newman and Penrose

[102]. In particular, we use the Kinnersley tetrad [105] {eS} = {I% n®* m® m*}, where

SR Zyl_i.lsl
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the tetrad vectors in Schwarzschild have components

o= (L 1,0,0) (4.3.1)

f(r)
no — % (1, £(r),0,0) (4.3.2)
me = % (0, 0, % Tsfne) (4.3.3)

and throughout this chapter we use an overline to denote a complex conjugate. These

vectors are each associated with a directional derivative:

D = (°V, (4.3.4)
A =n"V, (4.3.5)
§ = mV,. (4.3.6)

The tetrad formalism gives rise to spin coefficients; in Schwarzschild, the non-zero spin

coefficients are

cot 8

_2\/§r
M
v= 272
1

pP=—-
r

)
2r

a=—-[F3=

The Bardeen-Press equation, given in the last chapter as Eq. (3.2.2), gives information
about gravitational perturbations for s = £2. In this chapter, we specialize to s = —2.

The solution to Eq. (3.2.2) is then

(B
oy = p—j, (4.3.7)

where v, = C’amgnamﬂnVW‘j is one of the Weyl scalars. Meanwhile, while the stress-

energy 7% that sources the metric is proportional to a three-dimensional delta function,

T — %uauﬂé(r —70)0(0 = 00)d(¢ — o),
utrg

the source T 5 of ¥_5 is no longer so simple. Defining the tetrad components of the

stress-energy tensor,

Tup = Taﬁegef,
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the source is given by [85, 106]

Ty =2 {(A + 27 +5) [(8 + 20) Taa — (A + 1) Tua]
+ (6 4 20) [(A + 27 + 20)Toa — T2 ] } - (4.3.8)

Since we will be integrating a Green’s function against this source, it is convenient to

write it in terms of Dirac delta functions and their derivatives. The result is

t 2
T o(x,x0) :% { 2 <1 - ﬂ) —2r5Q)? (1 - %>] d(r —1r0)d(cos @ — cosby)

To To
X8(¢ — ¢o)
_9 (1 _ 45};[2> 73020 (r — 10)6(cos 6 — cos ) 5(¢ — ¢o)
0
&M (1 _ ﬂ) roQ0(r — 19)d" (cos 0 — cos )0 (¢ — ¢p)
0 To

+ {% (1 - %) — 2re0)? (1 + %>] 70§20 (1 — 79)d(cos @ — cos )
To To To

x8' (¢ — o)

. 2M 2 2 ! !
+2i (1 —— | 750" (r —r¢)d'(cos @ — cosby)d(¢p — ¢o)

_9 (1 — 2—) <1 _ M 7”392) 126" (r — 19)d(cos @ — cos 0p) (¢ — do)

To

T
—9 <1 _ %) (1 _ M 7"3(22) §(r —19)d (cos @ — cos6y)d (¢ — @)
2

+ (1 _ 274_M> raQ20" (r — 10)0(cos § — cos )5 (p — ¢o)
0

2
_ <1 _ %) 8(r —19)d" (cos O — cos 6y)d(p — o)

To

2
+ (1 _ M r392> 8(r —rg)d(cos @ — cos 0y)d" (¢ — gbo)} :

To
As outlined in the last chapter, we now integrate our Green’s function G(z,x’) against
A (r? f(r')) 72T _o(2', 29). The result is
) J4
Tm — _
b= D DT aYim(6,6 — 60) |2 T em (00,002,
0 4=2 m=—r

VT 2= 1) 1V (0,005,

VT DO DoV im0, 09| (439)
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with

_ % M
5= (B2) Lot i (1= 20) ]

To

=270 f00ro Gom (1, 70) [imroQ + fo] + rgfgafoggm(r, ro)} . (4.3.10)

_ ro§2 ) .
VS = - A20em (7o) [ = 2] + 2070 forsgem (7, 70), (4.3.11)
and
O om =~ 4.3.12
z/)—275771 - gfm(rv TO)a ( .O. )
where gy, is the same radial Green’s function defined in the last chapter but for s = —2,

fo = f(ro), and 0,,9(r,r0) = [0rg(r,7")]|,._,,- The quantities ¥ _s, @ZJS?}W @ZJ(:ng)m, and
1/1@2)7% all have S and R parts, and Eqns. (4.3.9)-(4.3.12) all hold for both parts as long
as the relevant label is placed on gs,,. While we are free to absorb terms proportional
to oY (6o, 0), which are constant in r, into the radial functions wg,emv we will see later
that factoring out their dependence on ¢ and m will be useful.

Our goal in this section is to find the linear perturbation A,z to the background metric
gap. Of course, 1_ is a scalar quantity, and finding it is not equivalent to calculating the
tensor hq,3. However, it turns out that 1_» contains all of the radiative information about
the metric perturbation. That is, we can construct the radiative part of h,g from _s;
then we can add the contributions due to the particle’s mass and angular momentum
separately. In doing so, we use a method originally discovered by Chrzanowski [107] and

Cohen and Kegeles [108], called the CCK metric reconstruction procedure. Our choice of

s = —2 means we specialize to the ingoing radiation gauge, where
hapl® =0 (4.3.13)
he = 0. (4.3.14)

The first step in CCK metric reconstruction is finding the Hertz Potential ¥, which

satisfies a differential equation sourced by 1_s:

12M8,¥ — V5OV IT = —8_,. (4.3.15)
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If we decompose ¥ into spin-weighted spherical harmonics

00 4
U= Z Z W —2Yem (0, ¢ — ¢o)

(=2 m=—/{
and use Eq. (4.2.5), then we can write the /m modes of ¥ algebraically in terms of the
¢m modes of _s:

(04 2)(L+ 1) — 1) (=1)™g g, — 120MmN_s 41
(€4 2)2(0 + 1)202(0 — 1)2 + (12Mmf)?

Vo =8 : (4.3.16)

where 1)_3 4, is everything contained in the square brackets in Eq. (4.3.9). The radiative

part of the metric is follows directly from W:

-1 SN 1 4 1
Rt =3y .50V _yp D(—5-2 _—
b {27"2 atp0 "0 (aT1%6) \/57“6 - V2r
—mamg(D — p)(D +3p)} ¥ £ c.c., (4.3.17)

02(D + 3p)

where the £ refers to the two polarizations of h,g. We point out here that ¥ and h,g have
S and R parts that are calculated from the corresponding parts of 1_,, and ultimately
constructed from the corresponding parts of gg,.

We still need to obtain the contributions to h,s due to the energy and angular mo-
mentum that the particle adds to the spacetime. As we will see later, the only relevant
components of the metric perturbation are the tt, t¢, and ¢¢ components. In Schwarz-
schild, the added energy and angular momentum do not contribute anything to hg,. The

contributions to hy and hg, are [104]

nonra 2
pemey = ST (4.3.18)
r
(nonrad) 2MH1U¢
PG — T, (4.3.19)

4.4 Gravitational Self-Force

In many ways, gravitational self-force calculations are analogous to those of scalar self-
force. As in the scalar case, the perturbation to the gravitational field can be decomposed

into singular and renormalized parts [109]:

hap = hiyg + hiy (4.4.1)
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such that hf}ﬁ is continuous and differentiable at the particle and is solely responsible
for the modification to the particle’s motion. The renormalized gravitational “self-force”

relative to geodesics on the background metric is given by [91, 92
[0 « [0 1 12
FR = —m(g™ + uuP) <V“h55 — Evghﬁl,) utu, (4.4.2)

and similarly for the singular part of the force, where V, is the covariant derivative
that is compatible with the background metric. The scare quotes around the term self-
force appear here for two reasons. First, gravity is not thought of as a force in General
Relativity; instead, freely-falling objects are considered inertial. Second, the motion
resulting from the “force” given above is that of a geodesic on the renormalized perturbed
spacetime with metric g,5 + haRB. It is tempting, then, to say that the gravitational self-
force is completely fictitious and results simply from the fact that we stubbornly measure
the motion of the particle relative to geodesics on the background spacetime. However,
this is also not quite right because while the massive particle follows a geodesic on the
metric gog + hiﬁ, nearby test particles follow geodesics on the full perturbed metric
9ap + hap. Thus, there is something unique about the effect of the particle’s own field on
its motion; this effect is referred to as the gravitational self-force, regardless of interpretive
difficulties.

However, there is one remaining difficulty with the gravitational self-force: the renor-
malized metric perturbation hgﬁ is gauge-dependent, and therefore so is F®“, in sharp
contrast to the scalar case. This makes it impossible to compare two self-force results
if the calculations are done in different gauges. To remedy this, Detweiler [11] found a
gauge-invariant? quantity?

1
H = §ha5u“uf8. (4.4.3)

Thus, in this chapter we choose to compute HY, called the renormalized redshift factor,
instead of the self-force. This will allow us to compare our results with those of other

authors who worked in different gauges.

2That is, for any gauge that preserves the helical symmetry of the system.
3 Alternatively, some compute AU = —u’H, and others compute hy;, = H/(ut)?.
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In order to take the limits required to renormalize H, we need to define it such that
it has well-defined values away from the particle, which means we need to extend the
particle’s four-velocity off its worldline. We are free to do this in any way we like, and we
choose the components of u® to be constant as we move away from the particle. With that
choice, we can speak of H as a function of the Schwarzschild coordinates and decompose

it into spherical harmonics:

H= i i: Hom oYem (0, 6). (4.4.4)

=0 m=—4
Similarly to the scalar case, the fm-modes of H are finite, and we can define the /-modes
¢
Hy= lim Y Heyp oVin(0,9). (4.4.5)

T—T0
m=—/{

The limit of H, as ¢ — oo is a constant Bpy:

l—o0

To renormalize the redshift factor, we need only to subtract By from H, and then sum

to infinity:
H} = By, (4.4.7)
SO
H" = "(H, - Bp). (4.4.8)
=0

Finally, we note here that the time rate of change of the particle’s energy F = muy is

related to the time derivative of HY:

dE m

This in turn is the opposite of the gravitational power radiated by the particle.

4.5 Using Hikida’s Method to Find the Redshift Factor

As in the scalar case, we split our radial Green’s function into S and R parts, defined

in the same way as the last chapter. The S part of Gem 18 still polynomial in m, and it
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follows immediately that the S part of Y _9 4m 1s also polynomial in m. In the scalar case,
it followed immediately that ng, when evaluated at the particle, was equal to the sum
2.

of a polynomial in m multiplied by |0Yz, (60, 0)|*. This is what allowed us to do the sum

over m analytically for general (-values. In this chapter, it is clear that the S parts of

w(—Q) (=1

o tms Vg ims and w(ﬁg,ém are polynomials in m. It is not clear at this point whether A

2

can be written as the sum of a polynomial in m multiplied by |oYzm (6, 0)|*. There are

two reasons for the uncertainty here: first, it is not obvious that the polynomial nature of

S(-2 S(—1
?/)( ) (-1)

“otms V- m» and @/Jﬁgo)em will meaningfully translate to the Hertz potential ¥ and then

the metric perturbation h.. Second, 1_g 4y, is decomposed into spin-weighted spherical
harmonics of spin-weight —2, but the mode-sum renormalization needs to be done with
respect to the non-spin-weighted basis ¢Yy,,. We expect that decomposing H into the
usual spherical harmonics will affect our expressions non-trivially.

We start by calculating W, and we will try to keep terms polynomial in m factored
from terms with a more complicated m-dependence. All of the equations in the rest of
this section are true whether they refer to the full perturbation, the S part, the R part, or
the renormalized perturbation, as long as the relevant labels are placed on the quantities
involved. The challenge here is dealing with the factor of (—=1)™,, _,, in Eq. (4.3.16). As
mentioned in the last chapter, g, = g, _,,. It follows from expressions (4.3.10)-(4.3.12)

that

-2 —(-2)
w(—Q,K)m = zbf2,2,7m

-1 —(-1)
w(—Q’Z)m = _¢—2,€7—m

We can then use Eq. (4.2.8), Eq. (4.2.9), and Eq. (4.2.10) to show that

(1) Do g = 2Yem (00, 00050+ V(€ +2)(€ = 1) 1Yeu (6o, 005},

+ T+ 2+ D= 1) Yo (60, 001
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We now define

\I’(Q) = 8 7’b(—2)
[0+ 2)(0+ D)0 — D)2 + (12MmfQ)2 7 —20m
\Ij(l) _ 8 ¢(_1)
(04 2)(0+ )0 — D)2 4 (12MmQ)2 "~ 2m?
8
n= dj@%,f’m:

m T (+2)(0+ D= D2 + (12MmQ)?

and we can then write

—[(£ +2)(¢+ 1) = 1) 5Yin (00, 0) — 120Mm® _5Y5u (6, 0)] T2
+ (04 2)(E+ D)0 = 1) Yo (80,0) — 120MmE 1Y (6, 0)] L)

(€ +2)(0+ 1)0(0 — 1) — 12iMm8 Yo (66, 0) T, (4.5.1)

It should be clear that \115(2) ‘llz(nl ), and \I/ ) are polynomial in m when written as a PN
expansion.
Finally, we need to see what happens with hy, g, and hge. We start with hy. From

Eq. (4.3.17), and summing over both polarizations, we see that the radiative part of hy

is

hy = —12 Z Z o/ (C+2)(€ + 1)0(0 = 1) oYer (6, 6 — o), (4.5.2)

=2 m=—{

where we are helped by the fact that the angular derivatives acting on W are two successive

spin-weight raising operators. Similarly,

0o l
ey = %sinez > DU/ (C+2)(€ = 1) _1Yem (0,6 — o), (4.5.3)

=2 m=—{

) J4
h¢¢ = — Sin2 0 Z Z Df,f(b)\llfm —Q}Qm(eu ¢ - ¢0)> (454)

{=—2m=—¢

where Df,(,i(b) and D,(f¢) are radial derivatives:

D(t¢) _ TomQ
" Jo

— 21 + iToar

and

1 M 2iroms
DY¥®) — { rom?Q? + 2irgm (1 — —)} — ( zr;m + 2) 700, + 1302
To 0
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As mentioned before, H needs to be decomposed into spherical harmonics, which
means we need to express hyy and hge in terms of spherical harmonics. We use the

expressions in Appendix C of [110] to show that

1

sin® _1Ye, (0, ¢) = WV\/ Crstm oYer1,m(0, @) +m oYem (6, 0)

— (f + 1) V Cﬁm 03@—1,m(9; ¢)]7
1 {6(6 — 1)\/ C£+1,mCZ+2,m On+2m(07 ¢)

V2l + )il —1)
+2m(l = 1)y/Crirm Yes1m

+ [0 = 1D)Cryrm + (4 1) +2)Cppm + 2m? — 00 +1)] Yo (0, ¢)
—2m(0 4+ 2)v/Com —1Ye1.m(0, 0)

+ (L4 1)+ 2)\/ConCrrm oYe2.m(0,0)},

sin? 0 _oYyn (0, ¢) =

where
(0 +m)(l —m)

Com = 20+ 1)(20—1)

(4.5.5)

We can then plug these expressions into our equations for h.s and hgg. Before we do, we

make the following definitions:

Xom = (C+ 2)(€ + 1)0(0 — 1) — 12iMmQ

2
O _ 2 —ll+1) s om0, g0
O (T § V7 ) R A Ty R

Z2) = omu® 4+ (0 +2)(0 —1)wl)

m*

Finally, evaluating the components of the metric perturbation at the position of the
particle and using the explicit expressions for Y, (6, 0), we find that

0o 4
1
hitloay = =5 3 3 (C+2)(C+ 1) = 1) X Zi |0 (6o, 0) |2, (4.5.6)
Y4

{=2 m=—
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00 l
1 ho2—1 . — )
Pig|omay = — - > § j D) { (L+2)(0 — 1) X, 2L — ; ConXt-1,mZ
(=3

2£+3

C£+1 myéJrl leS-H m:| |01/Zm (907 0)|

{+
1< 7
o 3 D [ X80, ST 28| ¥ O
/,n 7
1

1 5 —
T 2 [—éog,mXQ,ng?;} [0V, (60, 0) %, (4.5.7)

and

R |w=z0 Z Z Dy [ (t=2)(C = 3)ComXp2mZ,

=4 m=—4
_ 2m(20-1)
((+ 1)e(0—1)
F(0+1)(0 4 2)Clm + 2m® — (0 + 1)) X 2.V

2m(2€ + 3) — 2)
REDI 1)€CK+1,mXK+1,mZe+1’m

Oémyf—l,mzéz)l’m + (f(f - ]-)CZ—I—l,m

—(L+ )+ 3)Cr1mXes2mZ i | 1Yo (00,0

3
10
+ )" DY [——mog X om0 4 (6C 1 + 20Cs 1 + 2m% —12) X3, 251,

m=—3

3m —
—504,mX4mZ<2 — 42Cy 1 X5 Z %] |0Y3.m (60, 0)|?

2
+ > DY) [(203,m 120y, + 2m2 — 6) Xo, 250 — 03 X325

m=-—2

_3003,mX4,mZi,1721] |0}/2,m (90 ) O) |2

1
om -
b3 0 [ B0 X 22, — 0Ca X230 O, O

m=—1

+ DY [<12C1,0X0,0 28 | [0¥o (60, 0) . (4.5.8)

Remarkably, our final expressions are free of square roots. Noting that Cy,,, X, and

the S parts of Zgn) and Zéfn) are all polynomial in m, it follows that H S is a sum over

polynomials in m times |oY5,, (6o, 0)[*. Thus, we can once again do the renormalization

analytically, and Hikida’s method still works in the gravitational case. Notice, however,

that W, 5 contributes to Hy, so we need to compute the /~-modes explicitly through ¢ =9

ol L) fyl_i.lsl
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to get an expression for H that is accurate through 6'* PN Order.

Finally, we note here that

0 l
OH =Y "> imQHp oVem(0, ¢ — do); (4.5.9)

{=0 m=—¢
that is, to get 0,H and therefore the power radiated by the particle, we simply need to

multiply the ¢m-modes of H by imf).

4.6 Results

Following the format of the last chapter, we will first report several intermediate results:
general- and specific-¢ expressions for ® and ®*~!; general- and specific-f expressions
for HS and (dE/dt)S; and expressions for HY and (dE/dt)®. Unlike the last chapter,
the expressions for ®, ®=¥~! and the f-modes of both parts of H will be given through
1% PN order, and the f-modes of both parts of dE/dt will be given through 1.5'" order.
Higher-order expressions are too complicated to easily typeset.

We will then report the primary results of the chapter: the renormalized S part of H
and dE/dt; the R parts of the same quantities; and finally, the full renormalized redshift
factor H® and the power radiated by the particle, (dE/dt)®. All results will be given
through 6" PN order.

For all results, we will treat the particle’s angular velocity €2 as independent of its
radial coordinate ry. In this chapter, we cannot interpret these results as corresponding
to an accelerated particle. The reason is that whatever force was responsible for the
acceleration would have a stress-energy tensor associated with it and would therefore
source its own perturbation to the gravitational field. This is in contrast to the scalar
case, where you could accelerate the particle with something other than a scalar field.
Still, we will learn interesting things from keeping factors of o2 and factors of M /rg
separated. We also remind the reader here of the effective field theory work of Galley
[96-100], which calculates terms of different powers of M /ry separately. The results here

are therefore useful as intermediate points of comparison.
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4.6.1 Intermediate Results

We begin with general-¢ expressions for ® and ®*~1. They are as follows.

B = (rw)? [1 + (ﬁlm) %+ (—(€+ 2)% -5 +€1)+<29€+ 5 (m>2) 612+ PN(1.5)]
(4.6.1)
O+ = (rw)? {1 + (—%m) % + ((e - 1)% 4 %f%;_gl)) CiQ + PN(1.5)] (46.2)

Now, we show the ¢ = 2 expressions for these two functions. Remember that they are
solutions to a radial differential equation that resulted from the Bardeen-Press equation.
We used spin-weighted spherical harmonics with spin-weight —2, so £ > 2. At 1* PN

order, the general-¢ expressions are sufficient for ¢ > 3. For / = 2:

B = (rw)? {1 + (%rw) ~+ (-4% - i—;(rw)Q) S+ PN(1.5)] (4.6.3)
Bt = (ruw)? {1 ~ (irw) % + (% _ %(rw)Q - %%(m)‘l) 612 + PN(1.5)] (4.6.4)

Now for the general-¢ expressions for HS and (dE/dt)S:

S _
He—_
To

s_m 804 4+ 16/% 4 46(% + 38( — 147 o) 1
[1 - (2(% +5)(20 + 3)(20 — 1)(20 — 3) (10§2) ) 2 + PN(2)1 (4.6.5)

(dE)g_@rOQ Kz(@?+e+1>M 0

), e \l+2(—1r "
000+ 1)(3204 + 6403 — 8002 — 1120 — 9) 2\ 1
TUT (- Dl 5@+ B — i —3) oY ) 5+ PN(2.5)]

(4.6.6)

Because the f-modes of H and dE/dt are expressed with respect to the usual spherical
harmonics (which have spin-weight 0), they start at £ = 0. The expression shown for H, Eg
above is true for ¢ > 3, while that for (dF/ dt)? is true for ¢ > 4. We show the low-/¢

expressions for HP below.

HS = T—”; [1 + (T—Af + g—ﬁ(rOQ)2> é + PN(Q)} (4.6.7)
H =2 [(—%@09)2) 0—12 + PN(Q)] (4.6.8)
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& 1 168 r 1
HS = 2 14 (=022 — —= 22 (rpQ)* ) = + PN(2 4.6,
2 To |: + (42 (TO ) 107M(T0 ) 02 + ( ) ( 6 9)
Next are the low-¢ expressions for (dE/dt)S.
dE\®
(E)o =0 (4.6.10)
e : _ mrof2 _i(r Q)? 1 + PN(2.5) (4.6.11)
at ), 12 ¢ 140" ° c3 ’ o
dEN®  mPrQ [(TM 293 1
) S (Mg 2008 ) = + PN(2. 4.6.12
<dt)2 3 ¢ [(2TOTO 84 (ro )>c3+ ( 5)} (4.6.12)
dENS  m2rQ [[13M 167 1
— ) = —— | == = —(1Q)* | = +PN(2.5 4.6.13
(dt)3 rd ¢ {(5 ro ° 66 (ro ))C3+ ( )} ( )

For every (-value other than 2, H f” = PN(4) or higher. For { =2,

= [(%%(TOQ)‘*> 0—12 + PN(4)] | (4.6.14)
Meanwhile, for all /-values, (dE/ dt)g‘ = PN(2.5) or higher.

We remind the reader here that in order to find the full renormalized quantities H®
and (dE/dt)®, we need to take the high-¢ limit of H, L;S and (dE/ dt)? to get their respective
B-terms, which are reported to 6" PN order in the next subsection. To renormalize the S
parts of these quantities, we subtract these B-terms from them and them sum the result

form ¢ = 0 to infinity. Finally, we can add the respective R parts, which do not need to

be renormalized.

4.6.2 BH, HS_S, BdE/dta and (dE/dt)S_S

The regularization parameter By was found analytically by Detweiler [11]:

1-3 /11 M
By =2 2 ) (—, -1 —) . (4.6.15)
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This expression is true once we have enforced geodesic motion: Q = Qp = /M/r}.

Treating 2 and r( as independent, we find, to 6'" PN order,

m 1, 5o (1) 1 ,  Triohy 1\

7 177605\ /1\°
—MZQ? — — M3 - — ) (=
* ( 160 256 ) \¢
2M302 21 51 759808\ [/ 1\°
(- TS L /o L ial -
To 16 128 16384 c
N _AaMt? 7 Mot — Ol agzpage TSOMriQF  2289r°Q10N /1"
2 2 327 0 2048 65536 c
N C8MPQ2 35MAQ 85 A5 3795M2rQ°  11445Mr§Q"°
r 4 16 ° 2048 32768
29023182012\ 1\ "
S0 ) (= PN(7 4.6.16
a6 ) \e) TP (4.6.16)
which is consistent with
1 — 2M 7-292 11 292
m r 0 TO
Now that we have By, we can calculate
575 =3 "(H} - By).
/=0
The result is
6
gS-s_ 1 8-S,
o ; Hmn
with
5P =1 (4.6.18)
; M 3 168048
S—S 2,2 0
== _20%2 - 4.6.1
O = % T o (4.6.19)
5 M? 3 6827 27396577
O 8 = MO+ — Qb - 22 0 4.6.20
2 = o T T REe e T Taase g (4.6.20)
; 221 5 M3 276151MQ%3 4 9010381267
CS—S:__MQQQ__M2 2Q2 o 0 _M 2Q43 0
H3 36 T 7704 30T TaesRag
5408163312879
- 4.6.21
98336745M ( )
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5M*  17T3M3Q*  6032429M2Q%3 6041 M3*7*Q4r2 130815307817 M Q°r5

CIS—I_ZLS = 1 + — —
478 1210 385200 1536 750133480
10 1308878425708 173557187824690105-11
10,7 206,5 0 _ 0 4.6.22
g MR T T g1 3408 2701431414990 M ( )
- 147M°  1699M*02  31M*720%  84704899M3Q0r, 57619
S-S _ _ . . M3r20
H5 85617 T A DT 128400 768 00
27101275436 783M200r4  11995M272Q0rd
52509693600 1024
108675152345097293281 M Q%7 9 MO+ 6520327683660536030210710
— M7,
935929203926416000 2 0 10216322442144000

_ 256455367054976073943Q1 23
35258079439638198000 M

(4.6.23)

53038469341 M40 1110607 M*7x2Q 130233589 M* 710t 6713M°

Cg—S - _ _ + o
H6 59351616 27648 11796480 1712r8
832519M502  419M5720)2 N 2012925308063017M3Q073
1540873 19273 472587242400
| 2395843M3m*Q0%rf 16 16 ) s g, 1 12286170424911491857937 M2Q%r§
4608 45 5460075862297056000
_ 58085759M P (rf  41323494822573725279873416799 M Q'0rf
1769472 46414363141187200295136000
1 201572893012y 12
N 553 MR 4 8730900383696291572893Q" 2§
108 243009532137814041600

521908128057551798215851 7014715
648745841042987672144160M

(4.6.24)

Now for (dE/dt)5S. Detweiler [11] reported that d£/d¢ doesn’t need to be renormalized.

This is true for geodesic motion. If we don’t enforce geodesic motion, we find a non-zero

B-term:
M2 1\° 2M202 1 7 1\°
B —20%2) [ - — —MQy— =Q%3) | =
o | (24 o) (1) (7 - fasate - ot (4
M?Q4 M3Q2 11 1\"*
+ 0 3 - ——3MQ63 ﬁa%g -
TS 32 32
5M4Q2 65M3Q4 145 3525 875 1\?
+ M2QGT(2] . M3y 5 R o PIUSES =
870 32 512 512
35M5Q2 175]\42494 35 MR — 9275 1 208, - 84035M Q1077
4r3 812 64 512 8192
1396501210\ 1\
2 0 ) (2 PN(6. 4.6.2
- )() L PN(65) (4.6.25)
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As soon as we require 2 = Qg the above is zero. Meanwhile,

S-s 2 3
A\ (M@ 10,0 (1
dt 37’0 3 C

23M202 57 93520674 2240877\ /1\°
Bt LT V4 o € I 0 0 :
( 32 5T Tgo5 T torar ) \e
N 17M2Q0 22002 N 225088M Q%3 13169981Q°r§
15 3rd 11235 730275

14604601979\ /1)’
_|_— —
347T5M c

L (MU 3098MPQ!  4STMr 25412 o
re 451, 967 315 0
1205 605520446 M Q53 8
o M2 296 2 0o M 298 5
T R N T LT Y gt T

B 123883307268401975 n 8045342788012}t 1\°
30976074675 1475051175 M

C

SMPO2  6694M*Q* 1901 M*m2Q* 4984166 M3Q0Cr
+(_ T T N 6
796979M3 72007, 4264013536816M2Q08r% 184841 M212Q8rd

11520 * 10548822375 a 3840
18449132889161543M Q'%rg 56 M09y

121529466308250 45

| 2594095654252516076'2r)° 11945011819910723914r33) (1) 1 N

3687453881461350 * 1843726940730675M ¢

PN(6.5). (4.6.26)

Remarkably, when we enforce geodesic motion,

<%>§S _o (4.6.27)

This means that, as in the scalar case, the R part of the field contains all of the radiative

information—but this is only apparent when we make the replacement 2 — .

4.6.3 HY and (dE/dt)R

The R part of the redshift factor can be written

12
R m B
HR? = — § Cp s 4.6.28
ro & H,p/2 ( )
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with

R 168947’8

H1 = 1070 (4.6.29)
- 840 273962017
R = —Qtt 2 — 0 4.6.30
H2 = T107°0 0 T Tgorsar ( )
- 1260 5461960576 5408163310579
OR ., = ——MQY3 — 0 0 4.6.31
237 107 "o 20865 | 033367450 ( )
- 420 13670721634M Q6> 128 128
CEA = — ﬁMQQ4T3 + 8139405 o _ F fyMQGrg’ — ?Mﬁﬁ In (4|Q|ro) 7“8
1631444539088 . 173557187824691071! (46.3)
32778915 9701431414990 M o
. 112M° 105 2753696702M 22614
R e _M3Q4 o 0 128 MQQ6 4
H5 =07 1070 O 5200295 ey
2021293463103094699M Q7 7496
128 M32Q° In (4]0 4 0 _ MQET
+ n (4)€2ro) o + 3686393811350250 105 0 To
5 3776 243
- ?MQ8 In(2|Qry) — WMQ8 In(4]Qro)rg — TMQ8 In(6/Qro)rg
~ 5635275949322671Q107 (" . 2564553670549760739430)12y13 (46,39
79815019079250 35258079439638198000M o
- 3072 128
0111{[75.5 = 1—75M2 |Q|7T8 — 1—5M7T|Q|9’f’g (4634)
- 44373M4Q4  560MS  392MPQ0% 5565517751 M35
oR = O 192y M3Q5y3
H 11449 1078 T 1073 10418590 TR
4164919900017694087M2Q8r6 4408
— 192M3Q% 1n (4] 3 0 M?Q86
n (4)92ro) g 1579883062007250 t9 7 "o
11 11072
+ 1—5M298 In(2[Q2ro)ry + 4—5M298 In(4]Qro)ry + 243M>Q% In(6]Qro)rd
87859625901756909129597209M Q1) 327428y MQ'r§
80580491564561111623500 2835
322439 2026 243
+ MQY™ In(2[Qrg)ry — @MQIO In(4]Q2ro)ry — EMQIO In(6]92|ro)ry

5670
_1401983999029191802619127"52 521908128057551798215851 7014785

1627295974137147600 - 648745841042987672144160M

(4.6.35)
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Now, (dE/dt)® can be written

dE\" LN
(E) = m’ Z CgE/dt,p/za (4.6.36)
p=0
with
- 2304 2247708
C(le/dt,Q.E) = _ET?] 0 - 1073\4 (4637)
o 18304 ABOS 45722241808 146046r9Q1° (46.38)
= ——Mr — — ..
dE/dt35 = 535 710 730275 34775M
- 128
Cl/ara = —?m’éM|Q|7 (4.6.39)
- 384 25503564 M 1308 279612756734r8Q10
OR — 22722008 0 0
dE/dt4.5 5 o 243425 30076074675
8045342788711 )12
- i (4.6.40)
1475051175 M
- 768 3328 4609
CSE/dtﬁ = ?MTFT’SM|Q|7 — WWTSM|Q|9 - WT{'T‘SMK”Q (4641)
" 256 5824767162556 M2ri08 12288 512
CR :—M3 QG o 0 M2 498 o _M2 2 498
dE/dt55 = g4 T0 8204639625 17 T 15~ T To
65605444274612M i Q10 N 512 MO0 4 15047672593787723r,00"2
3314439990225 15 /o 409717097940150
11945011819910723r§3QM 12288 . ,
- M2r208 In(4|Q
1Ra3726040m306750 T 175 o2 In(4{Qro)
12
+ 51—5Mrg(21° In(4|Q|ro) (4.6.42)
- 1536 15616 20992
CCI;{E/dt,G = — TMQWT§M|Q|7 + —MWT8M|Q|9 — WT(TSM|Q|11
14008 21148
+ TM7m~3M|Q|9 ~ 1% mrgM|QM. (4.6.43)

4.6.4 HY and (dE/dt)?

Finally, we can add the renormalized S and R parts of H and dE/dt to find the full,

renormalized expressions for each. We start with H:
m 2
HY = - > Chop (4.6.44)
p=0
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with

Cho=—1 (4.6.45)
M
CR ==—— §QQ7’§ (4.6.46)
’ To 2
M2 3 1
CR = — —ZMQ? —Qird 4.6.47
H,2 27,(2) 2 TO + 8 rO ( )
291 5 M3 1733 4 13
R _ 29753202 2 gr2-202 4 27 MO43 1+ ZMa20%3 £ 220606 (4.6.48
on C5M*t 173MBQ? N 42247TM2Q4E 6041 M3 72 Qr3 N 2033M Q87§
A gl 127 3600 1536 3600
128 10 128 57170878
— ?’}/MQGST’S + EMTIQQGTS - ?]\4§26 11’1(47’0|Q|)7”8 - TOO (4649)
TMP 1699MA02 31MA20% 790457M3Q%y 57619
R — _ o M3 2Q4
Cis =53 w2 T T 1m0 768 0
4407421 M>Q57 e 4 11995 M0
— — 128 M2Q5 In (47|02 )ri
352800 + 128y M=, 094 + 128 n(4ro|Q|)r,
4124737TMQBrT 7496 9 5
170400 0 _ 0% YMQPrE + §M7T298’I“(7) - ?MQ8 In(2[2|ro)
3776 243 911441010710
— T.5MQ8 11’1(4|Q|T‘0)7"g - TMQS 1H(6|Q|’f‘o)’f‘g - BTOOO (4650)
128 13696 128
011}75‘5 = 1—5M27TQG|Q|T8 — WMQTHQVTS — EMWQSKMTS (4651)
o 465267TM*Q* 1110607 M 47204 N 130233589 M 47140 N 21MS  7253M°)
H6 ™ 5184 27648 11796480 1678 14473
0 0
419M572Q02 15220524421 M3Q5r3 2395843 M 3720673
— + 0 _ 192y M3Q%3 — 0
192r3 3175200 0 4608
16 1801095461 M2Q8r8 4408
__M3 496 3_1 2M3QGI 4 Q 3 0 M?QS6
g5 My = 19 n(4ro[2))rg 4665600 g MR
58085759 M 22088 11 11072
_ e 0y BM2Q8 In(2[Q2ro)rs + 4—5M2Q8 In(4]Q2ro)rs
45726707459 M Q1079 327428y MQ0rd
243M2Q8 In(6|Q|rg)rd 0 _ 0
+ n(6€ro)ro + 508614200 2835
553 322439 29296
+ 1—08M7r2(21°r8 + WMQIO In(2ro|Q2))ry — WMQIO In(4ro|Q2])r)
243 395191103012y
— MO0 Qrd — 0 4.6.52
14 n(6ro[2])ro 43545600 (4.6:52)
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For when we enforce geodesic motion, the redshift factor reduces to

m 17 1387 417 8581 30772 128
HR — 1= Zr—= 2 P 3 _ o _
7“0[ 2" T 8" ( B 32) < 1920 512 5 !
64 279258271 25189372 5944 6019
——In(16 4 - - In(2
5 x)>x ( 403200 02 1050 105 2)
4212 243 136967 10601627591
Sl n(da) — 2 In(6a) ) 2f -~ 2y (2D
35 mde) = =~ x))x 525 2903040
_ 10439604717 28008T3rt | BI6TT2 235649 o 27838
1769472 262144 2835 | 1890 2335
1
+%ln(6x)) 2%+ O(z13/2)] : (4.6.53)

This agrees with previous PN expansions of the redshift factor, including those of Bini
and Damour [12], who report it to PN(6), and Kavanagh et al. [13], who report it to
PN(21.5).

Finally, we write a similar expression for dE/dt:

12

dE\"®
(E) =m® ) Clinjas /o

p=0
with
MO? 1
O(E{E/dt,lﬁ = T3 + §Q4T§ (4.6.54)
23M3%Q2% BT 152
CcEl{E/dt,2.5 = T 32 + EMQ4TO — 1—5967“3 (4.6.55)
0
17TM2Q%  22M39Q2 5696 2551
Cakjaas = 5 33 105 MQry — WQBT‘? (4.6.56)
0
128
CgE/th = —?WM|Q|77“§ (4.6.57)
SM*Q02  3098M3Q0*  A8TM372Qt 244 1205
CR _ _ 22206, — M2r206,2
dE/dtA5 r 15rg + 0674 + 63 Ty~ 5gg MY
384086 M Q8r2 8 17558
B L R A (4.6.58)
768 3328 4609
Ciwjars = TM277|Q|77”3 - WWMMPTS - WWM\Q\QT’S (4.6.59)
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MO 6694M4Q* B 1901 M 47204 B 4580966 M3Q0r

CR S
dB/dt5.5 re + 4512 9612 7875
796979A43w296r0__151674716A4298r§+_122887A4298T4
11520 496125 175 0
315913M272Q08r¢ 12288 267569987 M Q10rT
— M?Q% In(4|0Q 4 0
3840 1 n(4[82ro)ro + 1559250
512 56 512 209702012710
+ E’y]\/[Qlorg — EMﬂQlorg + EMQIO 1n(4]Q]r0)7"g ~ 7 0
(4.6.60)
1536 15616 14008
Clpars = — —— M°m|"r§ + —— M>x|QPrg + ——M>7[Q|"rg
, 5 63 35
20992 21148
— %5WMKWM§— 19wMKWW§ (4.6.61)

After we set Q = Q, (dE/dt)R reduces to

R 2
(dE) ~m L1/2 {_¥$5/2 N 2494x7/2 _ 1287 , 89422 9/2 81917T:c5

at) T 5 105 5 T a3t 105

6643739510  512n% 54781 54784, (162)) 2117
— — n xr xXr
10914750 15 ' 525 | 525
13028
= T8+ O(213/2) (4.6.62)

This agrees with previous high-PN-order calculations of the gravitational wave flux, like
that of Fujita [111].

We note here how terms simplify after adding the R and renormalized S parts of
the quantities. In particular, all of the terms proportional to M ~! again went away, even
though in this case we can’t take the limit as M — 0 independently of the limit as 2 — 0.
Furthermore, there are no terms independent of  in (dE/dt)®.

Interestingly, there is a PN(1.5) term in (dE/d¢)®. This suggests dipolar radiation. Of
course, gravitational radiation is quadrupolar. We do see that, when we enforce geodesic
motion, CX, sars = 0. Still, this is interesting because it suggests that if freely-falling
particles did not follow geodesics—that is, if the Equivalence Principle did not hold—
dipolar radiation would exist. This comports with alternate theories of gravity that do not
respect the Equivalence Principle, like Rosen’s bimetric theory of gravity, which predicted

dipolar gravitational radiation [112].
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When we enforce geodesic motion, our results agree with previous Post-Newtonian
calculations [12, 13]. In particular, the 2.5 PN term in d£/d¢ is exactly what one obtains

by applying the quadrupole formula to our system.

4.7 Conclusion

In this section, we successfully applied the method of Hikida et al. [8, 9] to find Detweiler’s
[11] redshift factor and the power radiated by a massive point particle in circular orbit
around a Schwarzschild black hole. As in chapter 3, we treated the particle’s angular
velocity €2 as independent from its radial coordinate ry and black hole mass M. Unlike in
chapter 3, we cannot interpret our expressions to be accurate for an accelerated particle,
because whatever accelerated the particle would also perturb the spacetime. Neverthe-
less, this gave interesting results. First, we found that if the Equivalence Principle is
violated—that is, if a freely falling particle does not follow a geodesic—dipolar gravita-
tional radiation can result. We also found that the resulting expressions agree with what
one would expect of expressions that do describe an accelerated particle. In particular,
our expressions have no terms proportional to M !, despite the fact that the S and R
parts individually have such terms. We also saw that our Post-Newtonian expression for
the power radiated by the particle is free of terms independent of €2, which we would also
expect if it correctly described an accelerated particle.

To our knowledge, this is the first time that Hikida’s method has been successfully
applied to the gravitational case. Knowing that Hikida’s method allows for the analytical
renormalization of a particle following an arbitrary path, we hope that Hikida’s method

is eventually applied to more complicated orbits in the future.

95

www.manaraa.com



Bibliography

[1] B. Abbott et al., Physical review letters 116, 061102 (2016).

[2] B. Abbott et al., Physical Review Letters 116, 241103 (2016).

[3] B. Abbott et al., Physical Review Letters 118, 221101 (2017).

[4] B. Abbott et al., The Astrophysical Journal Letters 851, L35 (2017).
[5] B. P. Abbott et al., Physical review letters 119, 141101 (2017).

[6] B. P. Abbott et al., Physical Review Letters 119, 161101 (2017).

[7] B. Abbott et al., arXiv preprint arXiv:1805.11581 (2018).

[8] W. Hikida et al., Progress of theoretical physics 111, 821 (2004).

[9] W. Hikida et al., Progress of theoretical physics 113, 283 (2005).

[10] A. Heffernan, A. C. Ottewill, N. Warburton, B. Wardell, and P. Diener, arXiv
preprint arXiv:1712.01098 (2017).

[11] S. Detweiler, Physical Review D 77, 124026 (2008).
[12] D. Bini and T. Damour, Physical Review D 91, 064050 (2015).
[13] C. Kavanagh, A. C. Ottewill, and B. Wardell, Physical Review D 92, 084025 (2015).

[14] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 688
(1916).

96

ol LAl Zyl_i.lbl

www.manaraa.com




[15] A. Buonanno and T. Damour, Phys. Rev. D 59, 084006 (1999).
[16] T. Damour, International Journal of Modern Physics A 23, 1130 (2008).

[17] R. Arnowitt, S. Deser, and C. W. Misner, Gravitation: an introduction to current

research .
[18] M. Shibata and T. Nakamura, Physical Review D 52, 5428 (1995).
[19] T. W. Baumgarte and S. L. Shapiro, Physical Review D 59, 024007 (1998).
[20] L. Blanchet, Living Reviews in Relativity 17, 2 (2014).
[21] E. Poisson, A. Pound, and I. Vega, Living Reviews in Relativity 14, 7 (2011).
[22] E. D. Van Oeveren and J. L. Friedman, Physical Review D 95, 083014 (2017).
[23] C. S. Kochanek, The Astrophysical Journal 398, 234 (1992).
[24] D. Lai and A. G. Wiseman, Physical Review D 54, 3958 (1996).

[25] F. Pannarale, E. Berti, K. Kyutoku, B. D. Lackey, and M. Shibata, Phys. Rev. D
92, 084050 (2015).

[26] K. Chatziioannou, K. Yagi, A. Klein, N. Cornish, and N. Yunes, Physical Review
D 92, 104008 (2015), 1508.02062.

[27] X. Zhuge, J. M. Centrella, and S. L. W. McMillan, Physical Review D 54, 7261
(1996).

[28] K. Urytu, M. Shibata, and Y. Eriguchi, Physical Review D 62, 104015 (2000).

[29] J. A. Faber, P. Grandclément, F. A. Rasio, and K. Taniguchi, Physical review
letters 89, 231102 (2002).

[30] J. A. Faber, P. Grandclément, and F. A. Rasio, Physical Review D 69, 124036
(2004).

[31] M. Bejger et al., Astronomy & Astrophysics 431, 297 (2005).

97

www.manaraa.com



[43]

D. Gondek-Rosinska et al., Advances in Space Research 39, 271 (2007).

M. Shibata, K. Taniguchi, and K. Uryt, Physical Review D 71, 084021 (2005).
M. Shibata and K. Uryt, Progress of Theoretical Physics 107, 265 (2002).

R. Oechslin and H.-T. Janka, Physical review letters 99, 121102 (2007).

K. Taniguchi and E. Gourgoulhon, Physical Review D 68, 124025 (2003).

M. Shibata, Physical Review D 60, 104052 (1999).

M. Shibata and K. Uryu, Physical Review D 61, 064001 (2000).

M. Shibata and K. Taniguchi, Physical Review D 73, 064027 (2006).

M. Shibata, K. Taniguchi, and K. Uryu, Physical Review D 68, 084020 (2003).
M. Miller, P. Gressman, and W.-M. Suen, Physical Review D 69, 064026 (2004).

P. Marronetti, M. D. Duez, S. L. Shapiro, and T. W. Baumgarte, Physical review
letters 92, 141101 (2004).

Y. T. Liu, S. L. Shapiro, Z. B. Etienne, and K. Taniguchi, Physical Review D 78,
024012 (2008).

J. Vines, E. E. Flanagan, and T. Hinderer, Physical Review D 83, 084051 (2011).
T. Hinderer et al., Physical review letters 116, 181101 (2016).

S. Bernuzzi, T. Dietrich, and A. Nagar, Physical Review Letters 115, 091101
(2015), 1504.01764.

S. Bernuzzi, A. Nagar, T. Dietrich, and T. Damour, Physical Review Letters 114,
161103 (2015), 1412.4553.

K. Hotokezaka, K. Kyutoku, Y.-i. Sekiguchi, and M. Shibata, Physical Review D
93, 064082 (2016), 1603.01286.

98

www.manaraa.com



[49] T. Damour, A. Nagar, and L. Villain, Physical Review D 85, 123007 (2012).

[50] W. Del Pozzo, T. G. F. Li, M. Agathos, C. Van Den Broeck, and S. Vitale, Physical
review letters 111, 071101 (2013).

[51] M. Agathos et al., Physical Review D 92, 023012 (2015), 1503.05405.
[52] L. Wade et al., Physical Review D 89, 103012 (2014).
[53] C. Moustakidis, T. Gaitanos, C. Margaritis, and G. Lalazissis, (2016), 1608.00344.

[54] B. D. Lackey, K. Kyutoku, M. Shibata, P. R. Brady, and J. L. Friedman, Physical
Review D 89, 043009 (2014).

[55] C. E. Rhoades Jr and R. Ruffini, Physical Review Letters 32, 324 (1974).
[56] K. Brecher and G. Caporaso, Nature 259, 377 (1976).

[57] J. M. Lattimer, Annual Review of Nuclear and Particle Science 62, 485 (2012),
1305.3510.

[58] R. Geroch and L. Lindblom, Annals of Physics 207, 394 (1991).
[59] H. Mueller and B. D. Serot, Nuclear Physics A 606, 508 (1996).

[60] P. Pani, L. Gualtieri, A. Maselli, and V. Ferrari, Physical Review D 92, 024010
(2015), 1503.07365.

[61] R. Essick, S. Vitale, and N. N. Weinberg, Physical Review D 94, 103012 (2016),
1609.06362.

[62] J. R. Oppenheimer and G. M. Volkoff, Physical Review 55, 374 (1939).
[63] E. E. Flanagan and T. Hinderer, Physical Review D 77, 021502 (2008).
[64] T. Hinderer, The Astrophysical Journal 677, 1216 (2008).

[65] T. Regge and J. A. Wheeler, Physical Review 108, 1063 (1957).

99

www.manaraa.com



[66] S. Postnikov, M. Prakash, and J. M. Lattimer, Phys. Rev. D 82, 024016 (2010).
[67] L. Lindblom and N. M. Indik, Physical Review D 89, 064003 (2014).

[68] B. D. Lackey, K. Kyutoku, M. Shibata, P. R. Brady, and J. L. Friedman, Physical
Review D 85, 044061 (2012), 1109.3402.

[69] J. S. Read et al., Physical Review D 88, 044042 (2013), 1306.4065.
[70] C. Markakis et al., (in preparation).

[71] S. Koranda, N. Stergioulas, and J. L. Friedman, The Astrophysical Journal 488,
799 (1997).

[72] P. Haensel and J. Zdunik, Nature 340, 617 (1989).

[73] J. M. Lattimer and M. Prakash, From Nuclei to Stars: Festschrift in Honor of
Gerald E. Brown , 275 (2011).

[74] F. Douchin and P. Haensel, Astronomy & Astrophysics 380, 151 (2001).

[75] H. Miither, M. Prakash, and T. Ainsworth, Physics Letters B 199, 469 (1987).
[76] B. D. Lackey, M. Nayyar, and B. J. Owen, Physical Review D 73, 024021 (2006).
[77] A. Lichnerowicz, 17, 189 (1965).

[78] W. Israel, Annals of Physics 100, 310 (1976).

[79] W. Israel and J. M. Stewart, Annals of Physics 118, 341 (1979).

[80] L-S. Liu, I. Miiller, and T. Ruggeri, Annals of Physics 169, 191 (1986).

[81] S. A. Bludman and M. A. Ruderman, Physical Review D 1, 3243 (1970).

[82] A. Reisenegger and P. Goldreich, The Astrophysical Journal 395, 240 (1992).

[83] T. M. Linz, Self-Force on Accelerated Particles, PhD thesis, University of
Wisconsin-Milwaukee, 2015.

100

www.manaraa.com



[84] S. Mano, H. Suzuki, and E. Takasugi, Progress of Theoretical Physics 95, 1079

(1996).

[85] S. A. Teukolsky, Physical Review Letters 29, 1114 (1972).

[86] J. M. Bardeen and W. H. Press, Journal of Mathematical Physics 14, 7 (1973).

[87] M. Shuhei and T. Eiichi, Progress of theoretical physics 97, 213 (1997).

88] G.

89] F.

B. Arfken and H. J. Weber, Mathematical methods for physicists (AAPT, 1999).

W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST handbook

of mathematical functions hardback and CD-ROM (Cambridge University Press,

2010).

[90] T.
91] T.

92] .

C. Quinn, Physical Review D 62, 064029 (2000).
C. Quinn and R. M. Wald, Phys. Rev. D 56, 3381 (1997).

Mino, M. Sasaki, and T. Tanaka, Phys. Rev. D 55, 3457 (1997).

[93] L. Barack and A. Ori, Phys. Rev. D 61, 061502 (2000).

[94] T.

M. Linz, J. L. Friedman, and A. G. Wiseman, Physical Review D 90, 024064

(2014).

[95] A.
[96] C.
97] C.
98] C.
[99] C.

[100] C.

[101] D.

G. Wiseman, Physical Review D 61, 084014 (2000).

R. Galley and M. Tiglio, Physical Review D 79, 124027 (2009).

R. Galley and B. Hu, Physical Review D 79, 064002 (2009).

R. Galley, Classical and Quantum Gravity 29, 015010 (2011).

R. Galley, Classical and Quantum Gravity 29, 015011 (2011).

R. Galley and A. K. Leibovich, Physical Review D 86, 044029 (2012).
Gal’tsov, Journal of Physics A: Mathematical and General 15, 3737 (1982).

101

www.manaraa.com



[102] E. Newman and R. Penrose, Journal of Mathematical Physics 3, 566 (1962).

[103] J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rohrlich, and E. G. Sudarshan,
Journal of Mathematical Physics 8, 2155 (1967).

[104] A. G. Shah, J. L. Friedman, and T. S. Keidl, Physical Review D 86, 084059 (2012).

[105] W. M. Kinnersley, Type D gravitational fields, PhD thesis, California Institute of
Technology, 1968.

[106] C. Merlin and A. G. Shah, Physical Review D 91, 024005 (2015).
[107] P. L. Chrzanowski, Physical Review D 11, 2042 (1975).

[108] J. M. Cohen and L. S. Kegeles, Physical Review D 10, 1070 (1974).
[109] S. Detweiler and B. F. Whiting, Phys. Rev. D 67, 024025 (2003).
[110] L. Barack and N. Sago, Physical Review D 75, 064021 (2007).

[111] R. Fujita, Progress of theoretical physics 128, 971 (2012).

[112] C. M. Will and D. M. Eardley, The Astrophysical Journal 212, L91 (1977).

102

www.manaraa.com




CURRICULUM VITAE

Eric D. Van Oeveren
Place of birth: Grand Rapids, MI

EDUCATION

8/2012-8/2018 Doctor of Philosophy in Physics
University of Wisconsin — Milwaukee, Milwaukee, WI
Advisor: Dr. Alan Wiseman

8/2008-5/2012 Bachelor of Science in Physics
Grand Valley State University, Allendale, MI

RESEARCH EXPERIENCE

5/2013-present ~ Graduate Research Assistant
University of Wisconsin - Milwaukee, Milwaukee, WI
Advisor: Dr. Alan Wiseman

6/2011 — 8/2011 NSF REU Fellow
Baylor University, Waco, TX
Advisor: Dr. Ke Qiao

6/2010 — 8/2010 Undergraduate Research Assistant
Grand Valley State University, Allendale, MI
Advisor: Dr. Harold Schnyders

TEACHING EXPERIENCE

8/2012-present Teaching Assistant and Lecturer
University of Wisconsin — Milwaukee, Milwaukee, WI
Discussion section leader, tutor, and grader

FELLOWSHIPS & AWARDS

2016, 2017 CGSA University of Wisconsin-Milwaukee
2016 Research Excellence Award University of Wisconsin-Milwaukee
2012 Outstanding Student — Physics Grand Valley State University
2008-2012  Presidential Scholarship Grand Valley State University
2011 REU Fellowship National Science Foundation

CONFERENCES AND PRESENTATIONS

Midwest Relativity Meeting, October 2016
Perimeter Institute, Waterloo, ON
“A Constraint on the Tidal Deformability of Neutron Stars”

21st International Conference on General Relativity and Gravitation, July 2016
Columbia University, New York, NY

“Limits set by causality on neutron-star deformability and on the tidally induced change
in inspiral waveform”

103

www.manaraa.com



Midwest Relativity Meeting, October 2015
Northwestern University, Evanston, 1L
“Accelerated Scalar Self-Force on a Schwarzschild Background.”

18th Capra Meeting on Radiation Reaction in General Relativity, June 2015
Kyoto University, Kyoto, JP

“Using an Analytical Regularization Scheme to Find the Self-Force on an Accelerated
Scalar Charge.”

American Physical Society April Meeting, April 2012
Atlanta, GA

“Oppenheimer-Snyder Collapse in AdS Spacetime.”

PUBLICATIONS
Ke Qiao, Jie Kong, Eric Van Oeveren, Lorin S. Matthews, and Truell W. Hyde. “Mode

couplings and resonance instabilities in dust clusters.” Physical Review E 88, 043103
(2013)

Eric D. Van Oeveren and John L. Friedman. “Upper limit set by causality on the tidal
deformability of a neutron star.” Physical Review D 95, 083014 (2017).

104

www.manaraa.com




	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2018

	Neutron Star Tidal Deformability and Gravitational Self-force
	Eric Van Oeveren
	Recommended Citation


	Introduction
	Numerical Relativity, Post-Newtonian Theory, and Self-Force
	Numerical Relativity
	Post-Newtonian Theory
	Self-Force

	The Format of this Dissertation

	Neutron Star Tidal Deformability
	Introduction
	Method
	Causal EOS
	Static, Spherical Stars
	Calculating the Tidal Deformability
	Estimating the Gravitational Wave Phase Shift due to Tidal Deformability

	Results
	Effect of Matching Density on Constraints
	Comparison between Constraint and Results from Candidate EOSs

	Conclusion
	Appendix: Comments on causality and sound speed

	Scalar Self-Force and the Method of Hikida
	Introduction
	Black Hole Perturbation Theory
	The Bardeen-Press Equation
	The MST Method to solve the homogeneous Teukolsky Equation
	Solving the sourced Bardeen-Press equation with a Green's function

	Scalar Self-Force
	Mode-Sum Renormalization
	Description of the system and the resulting scalar perturbation
	Hikida's Method

	Results
	Intermediate Results
	 B and F-S 
	F
	FrR
	Comparisons to Other Work

	Conclusion

	Gravitational Self-Force
	Introduction
	Properties of the Spin-Weighted Spherical Harmonics
	Gravitational Perturbations to Schwarzschild Spacetimes
	Gravitational Self-Force
	Using Hikida's Method to Find the Redshift Factor
	Results
	Intermediate Results
	BH, H-S, BdE/dt, and (dE/dt)-S 
	H and (dE/dt)
	HR and (dE/dt)R

	Conclusion

	Bibliography
	Curriculum Vitae

